
Revision 11 – 2010-12-04 – Mark Waddingham

iOS Deployment Release Notes (R17)

Table of Contents
Overview.. 3
Getting Started..4

Choosing an SDK.. 4
Configuring LiveCode... 4
Configuring an iOS standalone..5
Running in the simulator..6
A first project... 6
Building for a real device...7

Configuring an iOS Application...8
Setting plist options... 8
Adding a SpringBoard icon... 9
Adding a default launch image (commercial)..9
Adding a splash image (personal and educational)... 10
Adding a default launch image (trial).. 10

General Engine Features...11
Engine version... 11
What doesn't work..11
What does work... 11
Debugging..11
Windowing and Stacks.. 12
System Dialogs – answer and ask..12
Non-file URL access..12

iOS-specific engine features...14
Multi-touch events... 14
Mouse events... 14
Motion events.. 14
Accelerometer support...15
Photo Picking Support... 15
Keyboard Input.. 16
Orientation handling.. 16
Resolution handling... 17
Location handling.. 18
Email composition... 18
File and folder handling...19
System alert support...20
Sound playback support...20
Video playback support... 21
URL launching support..21
Font querying support..22
Visual effect support.. 22
Status bar configuration support.. 22
Locale and system language query support... 23
Hardware and system version query support...23

1

Revision 11 – 2010-12-04 – Mark Waddingham

Modal Pick-Wheel support.. 23
iOS Native Controls...23

Browser control (UIWebView)... 24
Properties..24
Actions..25
Messages.. 25

Scroller control (UIScrollView)..26
Properties..26
Actions..28
Messages.. 28

Change Logs and History... 29
Engine Change History..29
iOS Deployment Change History.. 30
Document History..31

2

Revision 11 – 2010-12-04 – Mark Waddingham

Overview
LiveCode now incorporates facilities for deploying to iOS. These facilities include the ability to
build iOS applications that run in a variety of simulator versions as well as on iPhone, iPod Touch
and iPad devices.

In addition to supporting many of the desktop engine's features, the iOS engine hooks into many
iOS-specific features. Please see the iOS Specific Features section for more details.

For information on what parts of the Desktop feature set are currently implemented when deploying
to iOS, please see the What Works section.

Note: If you have not purchased the iOS deployment pack, you can still try out iOS deployment
features, but any built apps will have a forced banner for 5 seconds on startup, and will quit after
one minute.

Note: iOS deployment is only supported on Macs running the latest versions of Leopard or Snow
Leopard and require installation of an appropriate iOS SDK.

3

Revision 11 – 2010-12-04 – Mark Waddingham

Getting Started

Choosing an SDK

Before you can use iOS deployment, you need install the appropriate iOS SDKs available from
Apple.

In order to get the iPhone SDK, you need to be 'registered iPhone developer'. You can register for
this and download the SDK by visiting:

http://developer.apple.com/ios

LiveCode supports the following iOS SDKs:

Download Platform Simulators
Xcode 3.2.5 and iOS 4.2 Snow Leopard 4.2, 4.1, 4.0, 3.2
Xcode 3.2.4 and iOS 4.1 Snow Leopard 4.1, 4.0, 3.2
Xcode 3.2.1 and iOS 3.1.3 Snow Leopard 3.1.3
Xcode 3.1.4 and iOS 3.1.3 Leopard 3.1.3
Make sure you have at least one SDK installed, otherwise you will not be able to use the iOS
deployment feature.

If you wish to test applications in all versions of the simulator (3.1.3, 3.2, 4.0, 4.1 and 4.2) then it is
necessary to be running on Snow Leopard, and to have installed the iOS 4.2 SDK and the iOS 3.1.3
SDK in separate locations.

Note: As a registered iOS developer you will be able to develop and run applications in the iPhone
Simulator only. To build applications that can be run on an actual device you will need to enroll in
the iOS Developer Programme.

Configuring LiveCode

After you have installed an iOS SDK, it is necessary to tell LiveCode where to find it (or them, if
you have installed more than one).

To configure the paths to your installed SDKs, use the Mobile Support panel in Preferences.

4

http://developer.apple.com/ios
http://developer.apple.com/ios/download.action?path=/iphone/iphone_sdk_3.1.3__final/iphone_sdk_3.1.3_with_xcode_3.1.4__leopard__9m2809a.dmg
http://developer.apple.com/ios/download.action?path=/iphone/iphone_sdk_3.1.3__final/iphone_sdk_3.1.3_with_xcode_3.2.1__snow_leopard__10m2003a.dmg
http://developer.apple.com/ios/download.action?path=/ios/ios_sdk_4.1__final/xcode_3.2.4_and_ios_sdk_4.1.dmg
http://developer.apple.com/ios/download.action?path=/ios/ios_sdk_4.2__final/xcode_3.2.5_and_ios_sdk_4.2_final.dmg

Revision 11 – 2010-12-04 – Mark Waddingham

Use this pane to choose the correct SDK paths by using the '…' buttons next to the appropriate one.
You should choose the folder you selected when installing the SDK. (This defaults to '/Developer' in
the iOS SDK installers).

When you have successively chosen your SDK(s), the list of simulators that you will have available
will be updated.

Note: On startup if SDKs have not been previously configured, LiveCode will check to see if there is
a recognised SDK at /Developer.

Configuring an iOS standalone

To configure a stack for iOS, you use the new iOS deployment pane in the Standalone Application
Settings dialog, available from the File menu:

This pane allows you to set the iOS-specific options for your application. You can also add files you
wish to be included in the bundle using the Copy Files pane, and set the (bundle) name of your
application on the General pane.

To make a stack build for iOS, simply check the Build for iOS button and configure any options that
you wish.

Note: Making a stack build for iOS disables building for any other platform, however this is only
true of the standalone's mainstack. If you wish to share code and resources among platforms,
simply factor your application into multiple stacks, using a different mainstack for iOS and desktop
targets.

Note: The Inclusions, Copy Referenced Files, Bug Reports and Stacks features are not available
when building for iOS. If you wish to include multiple stackfiles in your application, use the Copy
Files feature instead.

5

Revision 11 – 2010-12-04 – Mark Waddingham

Running in the simulator

Once you have a stack configured for iOS, you can run it in the iOS Simulator by using the
Simulate button on the menubar:

This button will be enabled for any stack that has been configured for iOS deployment, and clicking
it will launch the stack in the simulator, terminating a running simulation if any.

You can configure which simulator version to use via the Simulator Version submenu of the
Developer menu:

Here you can choose both version, and device type you wish to simulate. (Be aware that 3.2 is iPad
only, and only 4.2 supports both iPad and iPhone/iPod Touch). Any setting you choose here will
take effect the next time you use the Simulate button.

Note: If the Simulate button remains disabled, even if you have configured a stack for iOS
deployment, it probably means you haven't configured your SDKs correctly. In this case, check that
there are available simulators in the Mobile Support pane of Preferences.

A first project

Once you have installed an iOS SDK and configured LiveCode for it, it is easy to run a simple
project:

1. Create a new main stack via File > New Mainstack.

2. Rename your new main stack to Hello World

3. Drag and drop a button onto the new main stack, and call it Click Me

4. Edit the Click Me button script and enter the following:

on mouseUp
 answer "Hello World!" with "ok"
end mouseUp

5. Save the Hello World stack.

6. Bring up the Standalone Application Settings dialog from the File menu, switch to the iOS
pane and make sure 'Build for iOS' is checked.

6

Revision 11 – 2010-12-04 – Mark Waddingham

7. Make sure you test stack is active and then click Simulate on the menubar.

8. Click the Click Me button in the simulator to see your script in action!

You can try the stack out in different versions of the simulator, simply by selecting the version you
want from the Development menu.

Building for a real device

Before you can begin testing your application on a real device, you will need to have several things
in place:

1. Enrolment in the iPhone Developer Programme: this is required so that you can generate the
necessary certificates and profiles.

2. A iPhone Developer Certificate: this is installed on your development machine and is used
to digitally sign the application you wish to put onto an iPhoneOS device. Follow the
instructions on the Certificates tab of the iPhone Developer Program Portal.

3. Registration of at least one iPhoneOS device in the program portal. You can add devices
using the Devices tab of the iPhone Developer Program Portal.

4. An App ID for your application. You can create App IDs using the App IDs tab of the
iPhone Developer Program Portal. (Note that at this stage it isn't necessary for you to have
a separate App ID for every app – you can use a single id for all your apps for
testing/development purposes.)

5. A provisioning profile tying together your test device's id, you app id and your certificate.
These can be created using the Provisioning tab of iPhone Developer Program Portal.

Once you have all these things ready, you should find that the 'Profile' drop-down menu in the iOS
pane of the Standalone Settings dialog is populated with any provisioning profiles you have
installed.

With a suitable profile chosen, you can simply use the Save as Standalone Application... item in the
File menu to build an iOS app bundle in the same was as you would build a standalone for any
other platform.

The next thing to do is to install the bundle on your test device. To do this, start up Xcode, and
choose Window > Organizer. This will bring an interface allowing you to manage the applications,
devices and profiles you are using for development.

Next, make sure you have your test device connected to your machine and choose it from the left
hand list. If you haven't used the device for development before, you will be prompted to do so, and
you'll then be presented with a list of installed applications.

To get your newly prepared application on the device, simply drag the application bundle from the
desktop into the Applications list – opting to install the appropriate provisioning profile if it has not
been previously installed on the device.

Finally, navigate to the application on your device, and start it up!

7

Revision 11 – 2010-12-04 – Mark Waddingham

Configuring an iOS Application

Setting plist options

All iOS applications have a plist that is built into the application bundle which control many aspects
of the applications requirements and functionality. To set the plist up, you simply use the options
presented in the Standalone Builder's iOS pane, these will be used to construct a suitable plist
automatically:

Here the numbered items are as follows:

1. The string to display as the label of the application on the SpringBoard
(CFBundleDisplayName).

2. The bundle identifier to use for the application, in conjunction with the App Id present in a
provisioning profile, this uniquely identifies an application (CFBundleId).

3. The version of the application (CFBundleVersion).

4. The icon to display on the SpringBoard, see Adding a SpringBoard icon for more details
(CFBundleIconFile and CFBundleIconFiles).

5. The image to use as the launch image (commercial), or the image to incoporate as the splash
image (personal and educational), see Adding a default launch image or Adding a splash
image for more details.

6. The provisioning profile to use when building the application to run on a device.

7. The set of (initial) interface orientations your application supports, iOS uses this key to
determine what launch image to display (UISupportedInterfaceOrientations).

8. The initial orientation to start the application up in (UIInterfaceOrientation).

9. The initial visibility state of the status bar (UIStatusBarHidden).

10. The initial status bar style (UIStatusBarStyle).

8

Revision 11 – 2010-12-04 – Mark Waddingham

11. The devices supported by the application, iOS uses this to determine if an application should
launch on iPod/iPhones and whether it should run in iPod/iPhone emulation mode on iPads
(UIDeviceFamily).

12. The minimum iOS version required by the application (MinimumOSVersion)

13. Determines whether the application requires a persistent WiFi connection
(UIRequiresPersistentWiFi)

14. Determines whether the 'Shared Files' feature of iTunes is enabled for this application
(UIFileSharingEnabled).

15. Determines whether the application quits when it is suspended on multi-tasking capable
versions of iOS – for now leave this option enabled, the iOS engine does not yet fully
support suspended operation (UIApplicationExitsOnSuspend).

16. These options determine what facilities the application requires or prohibits on the device in
order to be launched (UIRequiredDeviceCapabilities).

More details of the plist options can be found in the iOS Reference Document.

Adding a SpringBoard icon

All applications currently installed on an iOS device are displayed on the SpringBoard – the home
screen user interface you get presented with when the device is switched on.

Depending on what devices your application runs you should provide between 1 and 3 icons:

• <name>.png – a 57x57 icon for use on old (non-Retina) iPods and iPhones

• <name>-114.png – a 114x114 icon for use on Retina display capable iPods and iPhones

• <name>-72.png – a 72x72 icon for use on iPads

Here, <name> is anything you choose, the plugin will copy the files into the app bundle with the
correct final name to be picked up by the OS.

You should always provide a 57x57 icon, and the plugin will automatically look for appropriately
named icons at the other sizes to include.

Adding a default launch image (commercial)

On startup of an iOS application the SpringBoard will initially display a static image – this image
stays on screen until the application has completely finished initializing and is ready to update the
screen.

If you are using a commercial license then you have complete control over the launch image. You
should provide between 1 and 4 images as follows:

• <name>.png – a 320x480 image for use on old (non-Retina) iPods and iPhones

• <name>@2x.png – a 640x960 image for use on Retina display capable iPods and iPhones

• <name>-Portrait.png – a 768x1024 image for use on iPads when in portrait mode

• <name>-Landscape.png – a 1024x768 image for use on iPads when in landscape mode

Here, <name> is anything you choose, the plugin will copy the files into the app bundle with the

9

http://developer.apple.com/library/ios/#documentation/general/Reference/InfoPlistKeyReference/Introduction/Introduction.html%23//apple_ref/doc/uid/TP40009248-SW1

Revision 11 – 2010-12-04 – Mark Waddingham

correct final name to be picked up by the OS.

Adding a splash image (personal and educational)

If you are using a personal or educational license, then you are restricted in what can be displayed
as the launch image. In this case you should provide a (square) PNG image that will be placed
inside a LiveCode branded banner (see below).

The plugin automatically generates a collection of launch images using this image depending on the
target device settings you have specified in the plist.

We recommend providing an image of 600x600 for the splash – this will give good results when
resampled at the various resolutions and sizes required by the different iOS devices.

Note: With these license types, the generated launch image will remain on screen for 5 seconds
before being dismissed.

Adding a default launch image (trial)

If you are evaluating the iOS deployment feature using a trial license, then you cannot configure a
splash or launch image. Instead, all such applications will be built with the following launch image:

This image will remain on screen for 5 seconds before the application launches, and the application
will quit after one minute.

10

Revision 11 – 2010-12-04 – Mark Waddingham

General Engine Features

Engine version

The current release of the iOS engine was derived from the 4.0 version of the desktop engine. This
means that features present in 4.5.x that you might expect to work in the iOS engine will not be
present at this time. In particular, the engine version is fixed at 4.0.0 and the build number at 950.

We are working on reintegrating the iOS port of the engine with the main desktop engine, and
versioning will once again become unified in a future release.

What doesn't work

The following features have no effect:

• clipboard related syntax and functionality (planned for a future release)

• drag-drop related syntax and functionality (no support on mobile devices)

• printing syntax and functionality (planned for a future release)

• setting the mouseLoc (no support on mobile devices)

• backdrop related syntax and functionality (no support on mobile devices)

• cursor related syntax and functionality (no support on mobile devices)

• socket syntax and functionality (planned for a future release)

• audioclips/videoclips/player functionality (use the 'play' and 'play video' syntax described
later)

• externals cannot be loaded (planned for a future release)

What does work

The following things do work as expected:

• rendering of controls with non-system themes (default is Motif theme)

• date and time handling

• gradients, graphic effects and blending

• any non-platform, non-system dependent syntax (maths functions, string processing
functions, behaviors etc.)

Debugging

At present the options available for debugging applications running on target devices is limited.
Obviously, scripts will work in a similar fashion between Desktop and Mobile so this helps.

There is, however, a simple means of logging from an emulated target device. The LiveCode
command form:

put string

11

Revision 11 – 2010-12-04 – Mark Waddingham

Will write the string out to the standard error stream. These messages will be visible in Console.app
when running in the simulator, and in the Console tab of the Xcode Organizer for a given target
device while it is connected to the host computer.

Windowing and Stacks

The mobile engine uses a very simple model for window management: only one stack can be
displayed at a time.

The stack that is displayed is the most recent one that has been targeted with the go command.

The currently active stack will be the target for all mouse and keyboard input, as well as be in
receipt of a resizeStack message should the orientation or layout of the screen change.

The modal command can also still be used, and will cause the calling handler to block until the
modal'ed stack is closed as with the normal engine. Note, however, that performing a further go
stack from a modal'ed stack will cause the new stack to layer above the modal stack – this will
likely cause many headaches, so it is probably best to avoid this case!

At this time menus and other related popups will not work correctly, as these are implemented in the
engine (essentially) as a specialized form of go stack they will cause the current stack to be overlaid
completely, with various undesirable side-effects.

System Dialogs – answer and ask

At present, only simple answer dialogs are supported in a restricted way. The answer command is
mapped to the system standard MessageBox API call. The restricted syntax is:

answer message [with button and …] [titled title]

This will use the iPhone standard alert popup with the given buttons and title. The last button
specified will be marked as the default button.

Non-file URL access

The iOS engine has support for fetching urls, posting to urls and downloading urls in the
background. Note that the iOS engine does not support libUrl, and as such there are some
differences between url handling compared to the desktop.

To fetch the google home page you can do:

put url (“http://www.google.com”) into tGooglePage

To post data to a website, you can use:

post tData to url tMyUrl

To download a url in the background, you can use:

load url tMyUrl with message “myUrlDownloadFinished”

Note that, the callback message received after a load url will be of the form:

myUrlDownloadFinished url, status, data

Here, data is the actual content of the url that was fetched (assuming an error didn't occur).

Progress updates on ongoing url requests are communicated via the urlProgress message. This

12

http://www.google.com/

Revision 11 – 2010-12-04 – Mark Waddingham

message is periodically sent to the object whose script initiated the operation. It can have the form:

urlProgress “contacted”, pUrl

urlProgress “requested”, pUrl

urlProgress “loading”, pUrl, pBytesReceived, [pBytesTotal]

urlProgress “uploading”, pUrl, pBytesReceived, [pBytesTotal]

urlProgress “downloaded”, pUrl

urlProgress “uploaded”, pUrl

urlProgress “error”, pUrl, pErrorMessage

Note that pBytesTotal will be empty if the web server does not send the total data size.

You can also download a url direct to a file – this is particularly useful when downloading large
files since the normal 'url' chunk downloads into memory. To do this use:

libUrlDownloadToFile url, filename

Unlike the libUrl command of the same name, this command will block until the download is
complete, and will notify progress through the urlProgress message as described above.

13

Revision 11 – 2010-12-04 – Mark Waddingham

iOS-specific engine features
This version of the LiveCode iOS engine includes a wide-range of features specific to iOS devices.
These are described in the following sections.

Multi-touch events

Touches can be tracked in an application by responding to the following messages:

• touchStart id

• touchMove id, x, y

• touchEnd id

• touchRelease id

The id parameter is a number which uniquely identifies a sequence of touch messages
corresponding to an individual, physical touch action. All such sequences start with a touchStart
message, have one or more touchMove messages and finish with either a touchEnd or a
touchRelease message.

A touchRelease message is sent instead of a touchEnd message if the touch is cancelled due to an
incoming event such as a phone-call.

No two touch sequences will have the same id, and it is possible to have multiple (interleaving)
such sequences occurring at once. This allows handling of more than one physical touch at once
and, for example, allows you to track two fingers moving on the iPhone's screen.

The sequence of touch messages is tied to the control in which the touch started, in much the same
way mouse messages are tied to the object a mouse down starts in. The test used to determine what
object a touch starts in is identical to that used to determine whether the pointer is inside a control.
In particular, invisible and disabled controls will not considered viable candidates.

Mouse events

The engine will interpret the first touch sequence in any particular time period as mouse events in
the obvious way: the start of a touch corresponding to pressing the primary mouse button, and the
end of a touch corresponding to releasing the primary mouse button.

This means that all the standard LiveCode controls will respond in a similar way as they do in the
desktop version – in particular, you will receive the standard mouse events and the mouseLoc will
be kept updated appropriately.

Note that touch messages will still be sent, allowing you to choose how to handle input on a per-
control basis.

Motion events

An application can respond to any motion events generated by iPhoneOS by using the following
messages:

• motionStart motion

14

Revision 11 – 2010-12-04 – Mark Waddingham

• motionEnd motion

• motionRelease motion

Here motion is the type of motion detected by the device. As of iPhoneOS 3.0, the only motion that
is generated is “shake”.

When the motion starts, the current card of the defaultStack will receive motionStart and when the
motion ends it will receive motionEnd. In the same vein as the touch events, motionRelease is sent
instead of motionEnd if an event occurs that interrupts the motion (such as a phone call).

Accelerometer support

You can enable or disable the iPhone's internal accelerometer by using:

iphoneEnableAccelerometer [interval]

iphoneDisableAccelerometer

Enabling the accelerometer will cause accelerationChanged events to be delivered to the current
card of the defaultStack at the specified interval. The interval should be specified in seconds, and is
the approximate time between delivery of messages. Note that the interval is constrained by
hardware-specific minimums and maximums (which are left unspecified by Apple).

The accelerationChanged message takes a single parameter pSample, which consists of four
values:

x,y,z,t

Here x, y and z are the acceleration along those axes relative to gravity. The t value is a relative
measurement of how much time has passed – you can use the difference between the time values in
two accelerationChanged events to give an indication of how much time passed between the
samples.

Photo Picking Support

You can hook into the iPhone's native photo picker by using

iPhonePickPhoto source, [maxwidth, [maxheight]]

Here source is one of:

• library – the photo is taken from the device's photo library

• camera – the photo is taken using the device's camera

• album – the photo is taken from the device's recent camera roll

The maxwidth and maxheight parameters constrain the maximum size of an image. The chosen
image will be scaled down proportionally to fit within the size specified. If either size specified is 0,
then the parameter is ignored.

If the source type isn't availabe on the target device, the command will return with result “source
not available”. If the user cancels the pick, the command will return with result “cancel”.
Otherwise a new image object will be created on the current card of the default stack containing the
chosen image.

Note: The image object is cloned from the templateImage, so you can use this to configure settings

15

Revision 11 – 2010-12-04 – Mark Waddingham

before calling the picker.

Keyboard Input

Surprisingly, the SDK does not provide direct control over the iPhoneOS software keyboard.
However, an attempt has been made to provide some level of support for text input entry. If you
have a text field which is focusable (traversalOn true), then whenever it has focus the iPhone
keyboard will appear and allow basic text editing functionality.

While it is possible to use the non-Roman keyboards to enter text, for scripts which have combining
and/or input method type requirements the input will be incorrect. For example, languages such as
Russian can be entered correctly, but Korean will not work as expected.

The auto-capitalization, auto-correction, copy/paste, undo/redo and selection point magnification
features that are present in standard iPhone text entry fields are not supported.

Orientation handling

The iOS engine includes support for automatic handling of changes in orientation and in so doing
gains use of the smooth iOS standard animation rotation animation (note this replaces the previous
approach of using iphoneRotateInterface which no longer does anything).

You can configure which orientations your application supports, and also lock and unlock changes
in orientation.

The engine will automatically rotate the screen whenever the following are true.

• it detects an orientation change

• the orientation is in the currently configured 'allowed' set

• the orientation lock is off

Such a rotation may result in a resizeStack message being sent since rotating at 90 degrees switches
width and height.

You can fetch the current device orientation using the iphoneDeviceOrientation() function. This
returns one of:

• unknown – the orientation could not be determined

• portrait – the device is being held upward with the home button at the bottom

• portrait upside down – the device is being held upward with the home button at the top

• landscape left – the device is being held upward with the home button on the right

• landscape right – the device is being held upward with the home button on the left

• face up – the device is lying flat with the screen upward

• face down – the device is lying flat with the screen downward

Similarly, you can fetch the current interface orientation using the iphoneOrientation() function.
This returns one of portrait, portrait upside down, landscape left and landscape right. With the
same meanings as for device orientation.

16

Revision 11 – 2010-12-04 – Mark Waddingham

To configure which orientations your application supports use:

iphoneSetAllowedOrientations orientations

Here orientations must be a comma-delimited list consisting of at least one of portrait, portrait
upside down, landscape left and landscape right. The setting will take effect the next time an
orientation change is effected – the interface's orientation will only be changed if the new
orientation is among the configured list. You can query the currently allowed orientations with the
iphoneAllowedOrientations() function.

To lock or unlock orientation changes for a time use:

iphoneLockOrientation and iphoneUnlockOrientation

The orientation lock is nestable, and when an unlock request causes the nesting to return to zero, the
interface will rotate to match the devices current orientation (assuming it is in the set of allowed
orientations). You can query the current orientation lock state with the iphoneOrientationLocked()
function.

An application will receive an orientationChanged message if the device detects a change in its
position relative to the ground, and you can use the iphoneDeviceOrientation() function to find out
the current orientation. This message is sent to the current card of the default stack.

The orientationChanged message is sent before any automatic interface rotation takes place thus
changes to the orientation lock state and allowed set can be made at this point and still have an
effect. If you wish to perform an action after the interface has been rotated, then either do so on
receipt of resizeStack, or by using a send in 0 millisecs message.

Example: You can find a simple stack using the orientation handling features in the IDE resources
folder (open using the Help > Example Stacks and Resources menu item). The stack can be found
at: Mobile Examples/Orientation Example.livecode

Resolution handling

The new iPhone 4 has a display with double the resolution in both horizontal and vertical directions.
By default, iOS handles this by mapping one logical 'point' to two physical 'pixels' with applications
(rev included) interpreting everything in terms of logical points. This means that apps targetted for
older devices will run identically on the newer iPhone 4 devices.

As the screenRect and associated properties all deal in logical points, they do not reflect the actual
device resolution at which the app is being displayed. To fetch the device screen's resolution in
pixels use the iphoneDeviceResolution() function. This will return a string in the form width,
height – with the values being given in pixels.

To use the full resolution of such high-resolution devices, use the command:

iphoneUseDeviceResolution (true | false)

If passed true, rev will ensure that co-ordinates and sizes specified in rev are treated as being in
pixels, rather than logical points. In particular, when changed, a resizeStack message will be sent
notifying in the size change of the current main-stack, and functions and properties (such as the
screenRect) will reflect co-ordinates in pixels.

Note: The notion of pixel and logical point remains valid on older devices, its just that it is always
1-1 thus using this command will have no effect there.

17

Revision 11 – 2010-12-04 – Mark Waddingham

Location handling

Basic support is present for CoreLocation – the framework that allows tracking of the device's
position.

To start tracking the location of the device use:

iphoneStartTrackingLocation

To stop tracking the location of the device use:

iphoneStopTrackingLocation

You can detect changes in location by handling the locationChanged message. This message is sent
to the current card of the default stack. If location tracking cannot be started (typically due to the
user 'not allowing' access to CoreLocation) then a locationError message is sent instead.

The current location of the device can be fetched by using the iphoneCurrentLocation() function.
If location tracking has not been enabled this function returns empty. Otherwise it returns an array
with the following keys:

• horizontal accuracy – the maximum error in meters of the position indicated by longitude
and latitude

• latitude – the latitude of the current location, measured in degrees relative to the equator.
Positive values indicate positions in the Northern Hemisphere, negative values in the
Southern.

• longitude – the longitude of the current location, measured in degrees relative to the zero
meridian. Positive values extend east of the meridian, negative values extend west.

• vertical accuracy – the maximum error in meters of the altitude value.

• altitude – the distance in meters of the height of the device relative to sea-level. Positive
values extend upward of sea-level, negative values downward.

• timestamp – the time at which the measurement was taken, in seconds since 1970.

If the latitude and longitude could not be measured, those keys together with the horizontal
accuracy key will not be present. If the altitude could not be measured, that key together with the
vertical accuracy will not be present.

Email composition

A version of revMail has been implemented that hooks into the iPhone's MessageUI framework.
Using this, you can compose a message and request that the user send it using their currently
configured mail preferences.

The syntax of revMail is:

revMail toAddress, [ccAddress, [subject, [messageBody]]]

Where the address fields are comma separated lists of email address. If any of the parameters are
not present, the empty string is used instead.

Upon return, the result will be set to one of:

• not configured – if the user has turned off or has not setup mail access on their device

18

Revision 11 – 2010-12-04 – Mark Waddingham

• cancel – if the user chooses to cancel the send

• saved – if the user chose to save the message in drafts

• sent – if the user elected to send the email

• failed – if sending the email was attempted, but it failed

Note that once you've called the revMail command you have no more control over what the user
does with the message – they are free to modify it and the addresses as they see fit.uracy will not be
present.

File and folder handling

In general handling files and folders in the iPhone engine is the same as that on the desktop. All the
usual syntax associated with such operations will work. Including:

• open file/read/write/seek/close file

• delete file

• create folder/delete folder

• setting and getting the folder

• listing files and folders using the [detailed] files and the [detailed] folders

• storing and fetching binfile: and file: urls

However, it is important to be aware that the iPhoneOS imposes strict controls over what you can
and cannot access. Each application in iPhoneOS is stored in its own 'sandbox' folder (referred to as
the home folder. An application is free to read and write files within this folder and its descendants,
but is not allowed to access anything outside of this.

When an application is installed on a phone (or in the simulator) a number of initial folders are
created for use by the application. You can locate the paths to these folders using the
specialFolderPath() function with the following selectors:

• home – the (unique) folder containing the application bundle and its associated data and
folders

• documents – the folder in which the application should store any document data (this folder
is backed up by iTunes on sync)

• cache – the folder in which the application should store any transient data that needs to be
preserved between launches (this folder is not backed up by iTunes on sync)

• temporary – the folder in which the application should store any temporary data that is not
needed between launches (this folder is not backed up by iTunes on sync)

• engine – the folder containing the built standalone engine (i.e. the bundle). This is useful for
constructing paths to resources that have been copied into the bundle at build time.

In general you should only create files within the documents, cache, and temporary folders. Indeed,
be careful not to change or add any files within the application bundle. The application bundle is
digitally signed when it is built, and any changes to it after this point will invalidate the signature
and prevent it from launching.

19

Revision 11 – 2010-12-04 – Mark Waddingham

Note: Unlike (most) Mac OS X installs, the iPhoneOS filesystem is case-sensitive so take care to
ensure that you consistently use the same casing for filenames when constructing them.

System alert support

Support has been added for the beepSound and beep commands. These hook into iPhoneOS's
standard PlayPlayerSound support.

To specify a sound to be played as the system sound, use the beepSound global property. This
should be set to the filename of the sound to use when beep is executed. If you want no sound to
play when using beep, simply set the beepSound to empty.

To perform a system alert, use the beep command. If no sound has been specified via the
beepSound global property, the engine will request a vibration alert.

Note: The iPhone has no default system alert sound so if a sound is required one must be specified
by using the beepSound. The action of beep is controlled by the system and depends on the user's
preference settings. In particular, a beep will only cause a vibration if the user has enabled that
feature. Similarly, a beep will only cause a sound if the phone is not in silent mode.

Sound playback support

Basic support for playing sounds has been added using a variant of the play command. A single
sound can be played at once by using:

play soundFile [looping]

Executing such a command will first stop any currently playing sound, and then attempt to load the
given sound file. If looping is specified the sound will repeat forever, or until another sound is
played.

If the sound playback could not be started, the command will return “could not play sound” in the
result.

To stop a sound that is currently playing, simply use:

play empty

The volume at which a sound is played can be controlled via the playLoudness global property.

The overall volume of sound playback depends on the current volume setting the user has on their
device.

This feature uses the built-in sound playback facilities on the iPhone (AVAudioPlayer, to be
specific) and as such has support for a variety of formats including AIFF and MP3's.

You can monitor the current sound being played by using the sound global property. This will
either return the filename of the sound currently being played, or empty if there is no sound
currently playing.

Important: The iPhone simulator appears to have somewhat buggy support for sound playback via
AVAudioPlayer – it will intermittently fail for no reason. Therefore, if you are using the play sound
command be sure to test your application on a real device.

20

Revision 11 – 2010-12-04 – Mark Waddingham

Video playback support

Basic support for playing videos has been added using a variant of the play command. A video file
can be played by using:

play (video-file | video-url)

The video will be played fullscreen, and the command will not return until it is complete, or the
user dismisses it.

If a path is specified it will be interpreted as a local file. If a url is specified, then it must be either
an 'http', or 'https' url. In this case, the content will be streamed.

The playback uses iOS's built-in video playback support (MPMoviePlayer) and as such can use any
video files supported by that, including mp4's.

On iPhoneOS 3.1.3, the video will always play with landscape orientation (there is no 'legal' way to
change this). On iOS 3.2 and later, however, the orientation of the video will be tied to the current
interface orientation.

Appearance of the controller is tied to the showController of the templatePlayer. Changing this
property to true or false, will cause the controller to either be shown, or hidden.

While a movie is playing, any touch on the screen will result in a movieTouched message being
sent to the object's whose script started the video. The principal purpose of this message is allow the
play stop command to be used to stop the movie. e.g.

on movieTouched

play stop

end movieTouched

Important: The iPhone simulator appears to have somewhat buggy support for video playback via
MPMoviePlayer in some versions. Therefore, if you are using the play video command be sure to
test your application on a real device.

URL launching support

Support for launching URLs has been added. The launch url command can now be used to request
the opening of a given url:

launch url urlToOpen

When such a command is executed, the engine first checks to see if an application is available to
handle the URL. If no such application exists, the command returns “no association” in the result.
If an application is available, the engine requests that it launches with the given url.

Using this syntax it is possible to do things such as:

• open Safari with a given http: url

• open the dialer with a given phone number using a tel: url

Important: Successfully launching a url will cause another application to open and the requesting
application to be quit. The application will receive a shutdown message before this happens,
however.

21

Revision 11 – 2010-12-04 – Mark Waddingham

Font querying support

The list of available fonts can now be queried by using the fontNames function. This returns a
return-delimited list of all the available font families.

The list of available styles can be queried by using the fontStyles function:

fontStyles(fontFamily, 0)

This will return the list of all font names in the given family. It is these names which should be used
as the value of the textFont property.

Note: Strictly speaking the list returned by fontStyles isn't the font styles, but the font names and
the list returned by fontNames isn't the font names but the font families.

Visual effect support

The iOS engine now has support for a range of visual effects – including some specific to iOS. The
following effects are available:

• scroll (up | left | down | right)

• reveal (up | left | down | right)

• push (up | left | down | right)

• dissolve

• curl (up | down)

• flip (left | right)

Speed can be controlled via the usual adjectives very slow, slow, normal, fast or very fast.

Status bar configuration support

You can now configure the status bar that appears at the top of the iOS screen.

To control the visibility of the status bar use the following commands:

iphoneShowStatusBar

iphoneHideStatusBar

To control the style of the status bar use the following command:

iphoneSetStatusBarStyle style

Where style is one of:

• default – the default mode for the device

• translucent – a semi-transparent status bar (in this case the stack will appear underneath it)

• opaque – a black status bar (in this case the stack will appear below it).

On iPad devices, anything other that default has no effect.

22

Revision 11 – 2010-12-04 – Mark Waddingham

Locale and system language query support

You can query the list of preferred languages using the iphonePreferredLanguages() function.
This returns a return-delimited list of standard language tags in order of user preference (for
example “en”, “fr”, “de”, etc.)

You can query the currently configured locale using the iphoneCurrentLocale() function. This
returns a standard locale tag (for example “en_GB”, “en_US”, “fr_FR”, etc.)

Hardware and system version query support

You can now fetch information about the current hardware and system version using the standard
LiveCode syntax in the following ways.

To determine what processor an application is running on use the processor. In the simulator this
will return i386 and on a real device this will return ARM.

To determine the type of device an application is running on use the machine. This will return one
of:

• iPod Touch – the device is one of the iPod Touch models

• iPhone – the device is one of the iPhone models

• iPhone Simulator – the device is a simulated iPhone

• iPad – the device is the iPad

• iPad Simulator – the device is a simulator iPad

To determine the version of iPhoneOS the application is running on, use the systemVersion. For
example, if the device has iPhoneOS 3.2 installed, this property will return 3.2; if the device has
iPhoneOS 3.1.3 installed, this property will return 3.1.3.

Modal Pick-Wheel support

To cause a modal pickwheel to appear, use:

iphonePick optionList, initialIndex

Where optionList is a return-delimited list to choose from, and initialIndex is the index of the item
to be initially highlighted. The item the user chooses is returned in the result.

A modal pick-wheel is also automatically displayed when the user touches an option menu control,
functioning in much the same was as if a popup menu were to appear.

Note: Although the iphonePick command does work on the iPad, it is not quite 'correct' when
compared to Safari. A more consistent variant is being worked on.

iOS Native Controls

Low-level support has been added for creating and manipulating some native iOS controls (views).
There are generic set of commands and functions for creating and configuring certain UIView sub-
classes which then layer above the currently displayed stack.

At present, there is an implementation for the UIWebView control (browser) and for the
UIScrollView control (scroller).

23

Revision 11 – 2010-12-04 – Mark Waddingham

To create a native control use:

iphoneControlCreate controlType

Where controlType is the type of control you wish to create – either “browser” or “scroller”. This
command creates a new native control instance, and returns a unique (numeric) id for it in the
result.

To destroy a native control use:

iphoneControlDestroy id

Where id is the numeric id returned by iphoneControlCreate.

Once such a control has been created, you can configure it using:

iphoneControlSet id, property, value

Where

• id is the numeric id returned by iphoneControlCreate

• property is the name of the property to change

• value is the value of the property to change to

Properties can also be read by using iphoneControlGet(id, property).

Control specific behavior can be invoked by using:

iphoneControlDo id, action, ...

Where action is what is to be done, and the parameters are action/control specific.

While in the context of a message that has been dispatched from a native control, you can use the
iphoneControlTarget() function to fetch the id of the control that sent the message.

In general, any messages dispatched by the native control will be sent to the object containing the
script which created it, this also works correctly with behaviors – messages being sent to the object
referring to the behavior, and not the behavior's object.

Browser control (UIWebView)

A UIWebView control is created using a control type of “browser”. For full details of what the
UIWebView control is capable of, and background about it see the iOS reference document.

Properties

rect read/write The bounds of the control, relative to the top-left of the card.

visible read/write Set to true or false to determine whether the control should be displayed.

url read/write The url to be loaded into the web-view.

autoFit read/write Set to true or false to determine whether the page will be scaled to fit the
rect of the control (wraps the scalesPageToFit property of UIWebView).

canAdvance read-only Returns true if there is a next page in the history (wraps the
canGoForward property of UIWebView).

canRetreat read-only Returns true if there is a previous page in the history (wraps the

24

http://developer.apple.com/library/ios/#documentation/uikit/reference/UIWebView_Class/Reference/Reference.html

Revision 11 – 2010-12-04 – Mark Waddingham

canGoBack property of UIWebView).

Actions

iphoneControlDo id, “advance”

Move forward through the history (wraps the goForward method of UIWebView).

iphoneControlDo id, “retreat”

Move backward through the history (wraps the goBack method of UIWebView).

iphoneControlDo id, “reload”

Reload the current page (wraps the reload method of UIWebView).

iphoneControlDo id, “stop”

Stop loading the current page (wraps the stopLoading method of UIWebView).

iphoneControlDo id, “load”, baseUrl, htmlText

Loads as page consisting of the given htmlText with the given baseUrl (wraps the
loadHtmlString method of UIWebView).

iphoneControlDo id, “execute”, script

Evaluates the given JavaScript script in the context of the current page (wraps the
stringByEvaluationJavaScriptFromString method of UIWebView).

Messages

browserStartedLoading url

Sent when the given url has started to load (sent in response to the webViewDidFinishLoad
delegate method).

browserFinishedLoading url

Sent when the given url has finished loading (sent in response to the webViewDidStartLoad
delegate method).

browserLoadRequest url, type

Sent when the given url has been requested. The reason for the request is specified in type
which can be one of click, submit, navigate, reload, resubmit or other.

Not passing the message will cause the load request to not go ahead.

(This message is sent in response to the webView:shouldStartLoadWithRequest: delegate
method).

browserLoadFailed url, error

Sent when the given url fails to load (sent in response to the
webView:didFailLoadWithError: delegate method).

Example: You can find a simple stack using the native browser control features in the IDE
resources folder (open using the Help > Example Stacks and Resources menu item). The stack can

25

Revision 11 – 2010-12-04 – Mark Waddingham

be found at: Mobile Examples/Browser Example.livecode

Scroller control (UIScrollView)

A UIScrollView control is created using a control type of “scroller”. For full details of what the
UIScrollView control is capable of, and background about it see the iOS reference document.

Rather than act as a container for other controls, the 'scroller' is intended to be used as an overlay on
part of the screen you wish to interact with the proper iOS scrollbars. By responding to the various
scroller messages, you can move LiveCode controls or set the appropriate scroll properties of group
and fields to get a native scrolling effect.

Properties

rect read/write The bounds of the control, relative to the top-left of the card.

This is a comma-separated list of four integers, describing a
rectangle.

contentRect read/write The rectangle over which the scroller scrolls. This is distinct from the
scroller's rect, and is essentially the minimum/maximum values of
the scroll properties (adjusted for the size of the scroller).

This is a comma-separated list of four integers, describing a
rectangle.

hScroll read/write The horizontal scroll offset.

This is an integer value ranging between the left and right of the
contentRect, adjusting appropriately for the size of the scroller (i.e.
contentRect.left to contectRect.right – rect.width).

vScroll read/write The vertical scroll offset.

This is an integer value ranging between the top and bottom of the
contentRect, adjusting appropriately for the size of the scroller (i.e.
contentRect.top to contectRect.bottom – rect.height).

canBounce read/write Determines whether the scroller will 'bounce' when it hits the edge of
the contentRect (maps to the UIScrollView bounces property).

This is a boolean value.

canScrollToTop read/write Determines whether a touch on the status bar causes the scroll to
scroll to the top (maps to the UIScrollView scrollsToTop property).

This is a boolean value.

canCancelTouches read/write Determines whether the scroller is allowed to cancel an touch that
has been passed through to the underlying controls when it thinks its
a scroll gesture (maps to the UIScrollView
canCancelContentTouches property).

This is a boolean value.

delayTouches read/write Determines whether the scroller delays passing on touch-down
events until it has determined whether it is the start of a scroll gesture

26

http://developer.apple.com/library/ios/#documentation/uikit/reference/UIScrollView_Class/Reference/UIScrollView.html

Revision 11 – 2010-12-04 – Mark Waddingham

or not (maps to the UIScrollView delaysContentTouches property).

This is a boolean value.

pagingEnabled read/write Determines whether scrolling stops on multiples of the scroller's
bounds (maps to the UIScrollView pagingEnabled property).

This is a boolean value.

declerationRate read/write Determines the rate at which scrolling decelerates when a finger is
lifted (maps to the UIScrollView decelerationRate property).

This can be either normal, fast or a real number.

indicatorStyle read/write Determines the style of indicators to display (maps to the
UIScrollView indicatorStyle property).

This can be one of default, white or black.

indicatorInsets read/write Determines how far from the edge of the scrollers bounds, the
indicators are inset (maps to the UIScrollView scrollIndicatorInsets
property).

This is a comma-separated list of four integers, describing the left,
top, right and bottom inset distances.

scrollingEnabled read/write Determines whether touches on the scroller cause scrolling (maps to
the UIScrollView scrollEnabled property).

This is a boolean value.

hIndicator read/write Determines whether the horizontal indicator should be displayed
when scrolling (maps to the UIScrollView
showsHorizontalScrollIndicator property).

This is a boolean value.

vIndicator read/write Determines whether the vertical indicator should be displayed when
scrolling (maps to the UIScrollView showsVerticalScrollIndicator
property).

This is a boolean value.

lockDirection read/write Determines whether scrolling is locked to the initial direction a drag
occurs in (maps to the UIScrollView directionalLockEnabled
property).

This is a boolean value.

tracking read-only Returns true if the scroller is monitoring a touch for the start of a
scroll action (maps to the UIScrollView tracking property).

This is a boolean value.

dragging read-only Returns true if the scroller is currently performing a scroll action
(maps to the UIScrollView dragging property).

This is a boolean value.

decelerating read-only Returns true if the scroll is currently decelerating after a scroll action

27

Revision 11 – 2010-12-04 – Mark Waddingham

(maps to the UIScrollView decelerating property).

This is a boolean value.

Actions

iphoneControlDo id, “flashScrollIndicators”

Move forward through the history (wraps the goForward method of UIWebView).

Messages

scrollerBeginDecelerate

This message is sent when scrolling is about to start decelerating.

scrollerEndDecelerate

This message is sent when scrolling has finished decelerating.

scrollerScrollToTop

This message is sent when the scroller is scrolled to top by touching the status bar.

scrollerBeginDrag

This message is sent when a scroll initiating drag is started.

scrollerEndDrag didDecelerate

This message is sent when a scroll initiating drag is finished.

scrollerDidScroll hScroll, vScroll

This message is sent when the scroll properties of the scroller have changed.

Example: You can find a simple stack using the native scroller control features in the IDE resources
folder (open using the Help > Example Stacks and Resources menu item). The stack can be found
at: Mobile Examples/Scroller Example.livecode

28

Revision 11 – 2010-12-04 – Mark Waddingham

Change Logs and History

Engine Change History

pre-alpha-3 (2010-03-04) MW Initial version.
pre-alpha-4 (2010-03-05) MW Bold and italic font styles now honoured in font selection

Image picker no longer 'sticks' after selection
GIF images now display
Max width and height parameters added to iphonePickPhoto
Import snapshot no longer crashes

pre-alpha-5 (2010-03-11) MW Unicode text will now display
Umlauts and other non-ASCII characters will now display
Return key now causes a newline in fields
Crashes when changing image content have been fixed
Export snapshot now makes images with the correct colors
Rotating a non-masked images no longer causes corruption of the
image

pre-alpha-6 (2010-03-18) MW Answer command now returns its the chosen button in 'it'
Added support for detecting device orientation
Added support for setting interface orientation
Added basic support for CoreLocation
Refined control hit-test for touch handling so disabled controls
are not targetted.
mouseLoc now reports the correct y-coordinate
Added support for mail composition/sending
Corrected file handling functions interpretation of '/'
Added support for specialFolderPath()
Fixed problem with incorrect display of animated GIFs

pre-alpha-7 (2010-03-29) MW Added basic support for 'play <soundfile>'
Added support for 'beep' system alert
Added support for 'launch url'
Added support for 'the fontNames' and 'the fontStyles'
Added support for 'uniEncode' and 'uniDecode'
Added support for system date/time
Fixed issue with engine not picking up 'Oblique' fonts for italic
style
Fixed issue with unicode text not displaying in fields on load
Added support for 'engine' in 'specialFolderPath'

pre-alpha-8 (2010-04-12) MW Added support for targetting iPad
Added support for 'the systemVersion'
Added support for 'the machine'
Added support for 'the processor'
Fixed problem with orientation returning portrait mispelt
Improved responsiveness of image picker
Added support for iphonePickPhoto on the iPad

pre-alpha-10 (2010-08-12) MW Added support for 'play video <filename/url>'
Fixed issues with support for environment properties (the

29

Revision 11 – 2010-12-04 – Mark Waddingham

systemVersion, the processor, etc.)
Added support for 'the sound'
Fixed issue with garbage being returned from specialFolderPath
in some cases.
Added support for 'libUrlDownloadToFile'

pre-release-14 (2010-11-10) MW Added support for 'load url'
Added support for 'post url'
Added support for status bar configuration
Added support for building for appstore/ad-hoc
Added support for visual effects
Fixed issue with iphonePickPhoto crashing on iOS4
Fixed issue with some PNGs not displaying correctly
Fixed issue with graphic effects have inverted colors
Fixed issue with black screen appearing on startup
Fixed issues with landscape orientation mode

pre-release-17 (2010-12-01) MW Added support for browser native control
Added support for scroller native control
Added support for querying current locale and preferred
languages
Added support for 'movieTouched' message while movie playing
Added supoprt for 'play stop' command while movie playing
Added support for building iOS apps with evaluation licenses
Added support for modal pickwheel, and hooked into option
menus
Changed support for orientation handling to leverage built-in iOS
mechanism
Fixed various glitches with movie playback
Fixed issue with entering accented characters with the iOS
keyboard
Fixed issue with visual effects not working correctly in non-
portrait orientation
Fixed issue with 'the mouseColor' causing a crash

iOS Deployment Change History

pre-alpha-3 (2010-03-04) MW Initial version.
pre-alpha-4 (2010-03-05) MW Bundle identifier setting no longer lost on reload
pre-alpha-5 (2010-03-11) MW Project settings are no longer lost when adding/removing files
pre-alpha-10 (2010-08-12) MW Added support for configuring SDK roots

Added support for adding folders of files to the app bundle.
pre-release-14 (2010-11-10) MW Added support for ad-hoc and store profiles

Added support for specifying a splash screen
Added support for copying in icons of different resolutions
Added support for plist configuration
Fixed issue with app bundle not being deleted before rebuilding

release-17 (2010-12-01) MW Integrated plugin's functionality into IDE
Simulate start/stop buttons replaced by single menubar 'Simulate'
button
Deploy button replaced by standard 'Save as Standalone

30

Revision 11 – 2010-12-04 – Mark Waddingham

Application' action
Plist editor integrated as new Standalone Builder pane
Simulator selection moved to Simulator Version menu item of
Development menu
SDK configuration moved to 'Mobile Support' pane of
preferences
Added support UIFileSharingEnabled plist tag
Added ability to choose device type for simulator (iPad/iPhone)
Fixed issue with launch image filenames not being correctly
computed (and thus failing to copy into the bundle)

Document History

Revision 1 (2010-03-04) MW Initial version.
Revision 2 (2010-03-05) MW Added documentation for new iphonePhotoPick parameters
Revision 3 (2010-03-11) MW Improved consistency of syntax specifications and use

Refined documentation for touch events
Added new section about mouse events
Added new section on restrictions to dynamic features
Restructured headings to make sure PDF index works

Revision 4 (2010-03-18) MW Added section on orientation handling
Added section on location handling
Refined statements about the mouseLoc
Refined description of touch handling with regard to hit-testing
Clarified support for dynamic chunks
Added section on email composition
Added section file handling
Clarified blocking behavior of non-file url's

Revision 5 (2010-03-29) MW Added section on system alerts
Added section on sound support
Added section on url launching
Added section on font querying
Added description of engine parameter to specialFolderPath

Revision 6 (2010-04-12) MW Revised setting up your system with regard iPad support
Added section on hardware and system version querying

Revision 7 (2010-08-12) MW Revising initial sections to include details of SDK configuration
and requirements.
Revised 'Sound file support' section to include 'the sound'.
Added 'Video file support' section.
Revised 'Non-file url' section to include 'libUrlDownloadToFile'
Revised 'The revMobile Plugin' section to include changes to UI.
Revised 'Projects and Files' section to include details about
adding folders.

Revision 8 (2010-09-16) MW Rebranded from revMobile to iOS Deployment
Rebranded from rev* to LiveCode
Removed section on dynamic language features as no longer
relevant.

Revision 9 (2010-11-10) MW Various edits to improve language.
Expanded section on url commands

31

Revision 11 – 2010-12-04 – Mark Waddingham

Added section on visual effects
Added section on status bar configuration
Revised 'The Deployment Plugin' section
Revised the non-test deployment section
Added a section on the plist editor
Added a section on launch images
Added a section on splash images

Revision 10 (2010-12-01) MW Rewrote and reorganised initial sections to reflect new
integration into the IDE.
Rewrote section on orientation handling.
Added section on native controls and further sub-sections on
browser and scroller controls.
Added section of locale and system language query support.
Revised the play video section.

Revision 11 (2010-12-04) MW Added section on 'Engine Version'

32

	Overview
	Getting Started
	Choosing an SDK
	Configuring LiveCode
	Configuring an iOS standalone
	Running in the simulator
	A first project
	Building for a real device

	Configuring an iOS Application
	Setting plist options
	Adding a SpringBoard icon
	Adding a default launch image (commercial)
	Adding a splash image (personal and educational)
	Adding a default launch image (trial)

	General Engine Features
	Engine version
	What doesn't work
	What does work
	Debugging
	Windowing and Stacks
	System Dialogs – answer and ask
	Non-file URL access

	iOS-specific engine features
	Multi-touch events
	Mouse events
	Motion events
	Accelerometer support
	Photo Picking Support
	Keyboard Input
	Orientation handling
	Resolution handling
	Location handling
	Email composition
	File and folder handling
	System alert support
	Sound playback support
	Video playback support
	URL launching support
	Font querying support
	Visual effect support
	Status bar configuration support
	Locale and system language query support
	Hardware and system version query support
	Modal Pick-Wheel support
	iOS Native Controls
	Browser control (UIWebView)
	Properties
	Actions
	Messages

	Scroller control (UIScrollView)
	Properties
	Actions
	Messages

	Change Logs and History
	Engine Change History
	iOS Deployment Change History
	Document History

