Revision 5 — 2011-07-26

Server Deployment Release Notes

Table of Contents

OVETVIEW ..ttt ettt ettt et a et e e at e e bt e s ae e e bt e e a bt e bt e sa b e e bt e eab e e bt e sabeenbeeeabeenbeesateenbaeans 2
G317 121 5) WO OSSR 2
Installing With APACKHE.ccuviiiiiiiieii ettt ettt et e b e e tbeebeesabeenseessseenseas 2
INStAllINg 0N OF Xi..iiiiiiiieiee ettt sttt ettt et be et st sbe e eanes 4
INStalling 0N WINAOWS.......ccuiiiiieiieiiieieecie ettt be et e s b e e seeesbeesseeesseesaeenseas 5
INStAllING ON LANUX....eoitiiiiiiiie ittt ettt ettt s e et et e e beesnteenbeeenee 6
INStAllING VIA NEACCESS. . eeuviiiiieiiiiiieeiiecee ettt re ettt et eeba e sbeesbeessaeensaessaeenseenns 6
GLODAL SCIIPL....eeeteeiteeit ettt ettt et sttt et b bt et e s bttt et e sbtenbeentesanenaeens 6
CGIMOUE..... ettt et h ettt st e bt et eeh e bt eatesate bt emtees e e bt entesneenneenneenean 7
CommAaNnd-1NE IMOGEC.........ooiuiiiiieiie ettt ettt ettt et e sttt e bt e s neeebeesabeenbeesneeenneas 7
PUL EXEEISIONS. ... uteiieiitteeit ettt ettt ettt e et e bt e et e bt e sat e e bt e ebbe e bt e sate e bt e saeeeneens 8
EITOr HANAIINE.ceiiiiiie ettt ettt et e st e et e st e et e sabeenbeesneeeneeas 8
SEACK SUPPOTL.... ittt ettt ettt e st e e st e e e stee e tbeeensaaeensaeeensneeenseeesssaeennseeennseennns 8
EXEOINIALS. ..ottt ettt et e b e ettt e et e e bt e et e e bt e e nae e teeeateeneeenee 9
N D) OO PORUS RPN 9

N 1 LE: D S OO PSP VRO P RS PRTO PR 9
S SERVER ...ttt ettt ettt ettt a e e bt a e st n et et et e teeaeeteeneeneeneas 9
K € 2 ST 10

S GET RAW ..ottt ettt ettt e b e s e st e e be e st ese e st eneentensensessensen 10

§ GET BINARY ..ottt ettt ettt ettt e ae et e sseesseesaesteenseestenseensessaenseensennsenns 10

8 PO T ettt a ettt et et et e heeteene st st et et e tentenbeetea 10

S POST RAW ...ttt et ettt et et ae et e e s e s seesse s st e seesseeseeseenseesaenseensennnenses 10

S POST BINARY ..ottt sttt ettt et ettt beebe et e ene e st e st ensensensennes 10
SEAIN / SEAOUL / SEACTT ...t ettt et ettt e et et e et e e bt e saneenneas 11

171 10] 1016 LSOO 11
TEQUITEC. .-t euteentte ettt etteeate et te e st e eaeeeeuteeaseeeaeeeabeeeateenseeeate e seeeaeeenseeenseemseeemseanseeenbeenseesnseanseesnseenseennnean 11
010 L TP 11
put [new] header <header™..........cooiiiiiiiiiiiie et 11

PUL [UNICOAR | SSEIIMEZ ™. .oiiiiiieiiieiie ettt ettt ettt et steeebeesteeesbeessseenseesaseesseessseensaessseenseensns 12

PUL DINATY SSEIIMEZ™ ...ttt ettt et e bt e st e et e e s it e e bt e sseeeabeesaeeenbeesneesnseenaeans 12

put [unicode] MAarkup <SIINE™........cccviiiiiiiiieiieeie ettt ste e seaeereessbeebeeseseenseenenas 12

put [unicode | CONLENT <SEIINEZioiiiiiiieiieiie ettt sttt et esate et e e e ebeesnseeaeeeeee 12

the EITOTIMIOAE. ...ttt b ettt ettt s et e bt et e e st e nbe et e s et enaeennes 12
the OULPULTEXTENCOING.c.eiiiiiiiiieie ettt ettt sttt s 13
the OUtPULLANEENAINGS.......oiiiiiieiieeeee ettt e ebee e 13
SCIIPTEXECULIONEITOT ...ttt ettt et et e st e et esneeeeeas 14
Changes Compared t0 TEVSEIVET........cc.ueiiieiiierieeieeiie et eete et e eeeeeteeeeeeebeestaeebeessseensaessseesseessseenseas 14
Change Logs and HIStOTY......cc.eoiiiiiiiiiiiieieet ettt sttt saeen 14
ENgine Change HiStOTY......ccueiiiiiiiieiieiieeiie ettt ettt ete e e et ssaeetaeesaeesbaessseesaesnseenseennns 14
DOCUMENE HISTOTY .. .eiitiieiiieiie ettt ettt ettt et e et estee e bt e aeeenbeesaeesaseenneeeas 15

Revision 5 — 2011-07-26

Overview

The server engine is a separate build of the LiveCode engine with specific syntax and functionality
that makes it suitable for use in command-line contexts and, in particular, as a CGI processor. In
terms of interaction, it borrows heavily from PHP.

The principal difference between the server engine and desktop/mobile engines is that it is able to
process scripts from text files in global scope. Such a script consists of content to output directly
interspersed with code segments. Code segments are enclosed in processing instructions '<?... 7>'.
This global script is naturally integrated into the existing language structure by being represented as
an implicitly created 'Home' stack that sits at the root of the message path - identical to the Home
stack in the IDE engine.

Installation

For each supported platform, LiveCode Server is distributed as a single .zip file containing the
server engine, the drivers and externals and these release notes. The engine can be run in two
separate modes, command line mode or CGI mode (see the appropriate sections later in this
document for more information). To run the engine in command line mode, unzip the appropriate
archive for your platform, then execute the livecode-server binary (livecode-server.exe on
Windows) from the command line, passing the initial script as the first argument. For example:

[user @/ Li veCodeServer/]$ |ivecode-server my_script.lc
To run the in CGI mode, the engine needs to be integrated with the web server software running on
your machine. There are various web server packages available, most of which should be

compatible with LiveCode Server. In this document, we describe how to setup for the most popular
package, Apache.

Installing with Apache

The simplest way to get LiveCode Sever running as a CGI is to add the required directives to your
Apache configuration, mapping LiveCode script files to the livecode-server binary. If you do not
have access to your machine's Apache configuration, see the section Installing via .htaccess.

In order to set up LiveCode Server as a CGI with Apache, the following three modules must be
enabled:

* mod actions: http://httpd.apache.org/docs/2.0/mod/mod_actions.html

* mod_cgi: http://httpd.apache.org/docs/2.0/mod/mod_cgi.html

* mod alias: http://httpd.apache.org/docs/2.0/mod/mod_alias.html

To begin, unzip the appropriate LiveCode Sever archive for your platform to a suitable location on
your machine. Your system may already have a pre-configured directory where CGI executables
are stored, in which case you may choose to install the server engine and its associated files there.
To determine if your system has been set up with such a central location, search your httpd.conf file
for an entry like the following (for more information on the location of your httpd.conf file, see the
installation section for your platform):

ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/
<Directory "/usr/lib/cgi-bin">

http://httpd.apache.org/docs/2.0/mod/mod_actions.html
http://httpd.apache.org/docs/2.0/mod/mod_alias.html
http://httpd.apache.org/docs/2.0/mod/mod_cgi.html

Revision 5 — 2011-07-26

Al l onOverri de None
Options +ExecCd -MultiViews +SynLinkslfOaner Mat ch
O der all ow, deny
Al'low from al |
</Directory>

These directives determine that by default, all requests to /cgi-bin/ will be mapped to the
directory /ust/lib/cgi-bin/.

If you wish to limit the use of the LiveCode server engine to your user account only or do not have
access to a shared CGI directory, then you can install the server within your home directory (or any
other location).

Once unzipped, you need to map requests for LiveCode scripts to the server engine. You can do
this by adding the appropriate directives to your httpd.conf file. Your httpd.conf file should have an
entry similar to the following:

Documnent Root /var/ ww
This directive determines where the web server will look for files. For example, in the above

situation, if your were to request http://localhost/index.lc, the web server will serve the file located
at /var/www/index.lc.

You need to tell the server to map all .Ic files within the document root and its sub-directories to the
LiveCode Server engine. To do that, you need to add extra entries to the <Directory> directive for
the document root. Locate the <Directory> directive for your document root. It should look
something like the following:

<Di rectory “/var/ww ">
Options | ndexes Fol | owSynii nks Ml ti Vi ews
Al l onOverri de None
Order all ow, deny
Al'low from al |
</Directory>

To this directive, add the following two lines:

AddHandl er |ivecode-script .lc

Action livecode-script /cgi-bin/livecode-server
The first line tells the web server to match files with the .Ic extension (the extension can be anything
and can be used to map particular extensions to a given version of the LiveCode Server engine)
with the type livecode-script. The second line maps files of type livecode-script to the CGI script

livecode-server in the directory cgi-bin. Once these two lines have been added, your <Directory>
directive should look something like this:

<Directory “/var/ww ">
Opti ons | ndexes Fol |l owSynLi nks Mul ti Vi ews
Al'l owOverri de None
Order all ow, deny
Allow from all
AddHandl er |ivecode-script .lc
Action livecode-script /cgi-bin/livecode-server

Revision 5 — 2011-07-26

</Directory>

If a default cgi-bin directory has been set up and you have installed the LiveCode server engine and
associated files directly within that directory, then setup is complete. If not, you must add a
ScriptAlias directive that will determine the location of our LiveCode server engine. If, for
example, you have installed the LiveCode Server engine and associated files in the directory
/home/username/LiveCodeServer/4 6 3/, then this directive will be as follows:

ScriptAlias /cgi-bin/livecode-server
/ horre/ user nane/ Li veCodeServer/4_6_3/1ivecode-server

If a default CGI directory has been set up but you wish to install you LiveCode server files
elsewhere, you will either need to remove that alias or ensure that the name of the new alias you
create is different to that of the default directory. The first ScriptAlias directive Apache finds for a
given alias will overwrite all others. For example, if the default CGI directory has the /cgi-bin/, the
alias of the directory where you will store the LiveCode Server files must be something different
(unless of course you remove the default alias). In this case, your additions may look something
like the following:

AddHandl er |ivecode-script .lc
Action livecode-script /livecode-cgi/livecode-server

ScriptAlias /livecode-cgi/livecode-server
/ hone/ user nane/ Li veCodeServer/ 4 _6_3/1ivecode-server

Finally, you must make sure that this directory has permissions to execute CGI scripts. You do this
by adding the following <Directory> directive.
<Directory "/hone/usernane/Li veCodeServer/">
Opti ons ExecCd
Order al |l ow, deny
Al'low from all
</Directory>

Setup is now complete. All you need to do now is restart Apache.

Installing on OS X

OS X comes with Apache installed by default. Most of the relevant files can be found in the
directory /etc/apache2/ which can be reached using Finder via the Got to Folder option from the Go
menu. To enable Apache, you need to turn on Web Sharing from within the Sharing pane of System
Preferences.

By default, each user has been set up with their own sub-site that can be accessed by the following
link:

http://localhost/~username/

The files for each user's site are served from the directory /Users/username/Sites/ with the Apache
config file for that sub-site located at /etc/apache2/users/username.conf. If you want to set up
LiveCode Server for a specific user, you need to modify the users Apache .conf file to look the
following:
<Directory "/ Users/usernane/Sites/">
Options | ndexes Multi Vi ews
Al | owOverri de None

http://localhost/~username/

Revision 5 — 2011-07-26

Order all ow, deny

Allow from all

AddHandl er livecode-script .lc

Action livecode-script /livecode-cgi/livecode-server
</Directory>
<Directory "/ Users/usernane/LiveCodeServer/">

Opti ons ExecCd

Order al |l ow, deny

Al'low from all
</Directory>

ScriptAlias /livecode-cgi/livecode-server
/ User s/ user nane/ Li veCodeServer/4_6_3/1ivecode-server

This assumes that the LiveCode Server engine and associated files have been installed in the
directory /Users/username/LiveCodeServer/4 6 3/.

If you want to install LiveCode Server for all users, you can install the LiveCode Server engine and
associated files in the directory /Library/WebServer/CGI-Executables/. This is the default location
for CGI executables, as specified in the file /etc/apache2/httpd.conf. You then need to add the
following two entries to the <Directory ““/Library/WebServer/Documents’>:

AddHandl er |ivecode-script .lc

Action livecode-script /cgi-bin/livecode-server
Once complete, you can restart Apache either by disabling and enabling Web Sharing from System
Preferences or by executing the following command from the terminal:

[user @] $ sudo apachectl restart

Installing on Windows

Apache installers for Windows can be found here: http:/httpd.apache.org/download.cgi#apache22.
By default, (assuming C:\ is your main hard disk) Apache installs at C:/Program Files/Apache
Software Foundation/Apache2.2/, with the httpd.conf file located in the conf/ sub-directory. Files
are served from the htdocs/ sub-directory.

To get LiveCode Server up and running, add the following entries to the <Directory "C:/Program
Files/Apache Software Foundation/Apache2.2/htdocs"> directive in the httpd.conf file.

AddHandl er |ivecode-script .lc

Action livecode-script /cgi-bin/livecode-server.exe
If you install LiveCode Server in the directory C:/Program Files/Apache Software

Foundation/Apache2.2/cgi-bin/, all you need to do now is restart Apache, using the tools available
from the Start menu or the System Tray.

If you wish to install LiveCode Server in a custom location (for example
C:/LiveCodeServer/4 6 3/), you will need to add the following lines to your httpd.conf file before
restarting Apache:

<Directory "C./LiveCodeServer/4 6 3/">
Opti ons ExecCd
Order all ow, deny
Al'low from al |

http://httpd.apache.org/download.cgi#apache22

Revision 5 — 2011-07-26

</Directory>

ScriptAlias /cgi-bin/livecode-server.exe

"C./LiveCodeServer/4 6 3/1ivecode-server. exe"
As noted in the section Installing with Apache, you will need to make sure your new alias does no
clash with any existing defaults.

Apache can also be installed as part of a WAMP package (Windows Apache MySQL PHP). See
this Wikipedia page for a comparison of WAMP packages available:
http://en.wikipedia.org/wiki/Comparison_of WAMPs. Most WAMP packages will use a standard
Apache configuration, with a similar directory and httpd.conf structure as detailed above.

Installing on Linux

Most Linux distributions come with Apache installed by default. If not, you can either install it
using the appropriate package manager for your system, download pre-built binaries for your
system or build it from source. The most common location for Apache is /etc/apache2/, with the
httpd.conf file residing within that directory. Locate your main httpd.conf file and add the
directives detailed in the section Installing With Apache, before restarting apache.

Installing via .htaccess

If you are attempting to install LiveCode Server on a shared host, it will often be the case that you
will not have access to the Apache configuration files. If your host allows configurable .htaccess
files, LiveCode Server can be configured as follows:

Unzip the LiveCode Server archive into the cgi-bin folder. Then, in the 'public_html' directory,
create a .htaccess file along the following lines:

Opti ons ExecCd
AddHandl er |ivecode-script .lc
Action livecode-script /cgi-bin/livecode-server

This file will tell Apache to map files with a .lc extension to livecode-script files, which should then
get executed by the LiveCode Server CGI.

Global Script

At start up, a 'Home' stack is created which serves as the container for the global script. This stack
sits at the root of the message path and works in much the same way as the IDE home stack - it sits
after all mainstacks in the message path, but before library stacks and backscripts.

Global script execution begins with either the file that was specified on the command-line (non-CGI
mode), or as part of the PATH TRANSLATED environment variable (CGI mode). Further scripts
can be executed via the include or require commands, which always affect the global script
regardless of where they are executed from.

Scripts are parsed in full before being executed, with any handler and variable definitions being
added to the home stack environment before any commands placed at global scope are executed.
The latter is ordered by encounter in the file. As include and require are commands, the parse-
before-execute effect only extends as far as the end of the current file.

A script consists of an alternating sequence of content blocks and code blocks. A code block is
contained between <?rev ... 7>, <?Ic ... 7> or <?livecode ...?> tags with the 7> being an implicit

6

http://en.wikipedia.org/wiki/Comparison_of_WAMPs

Revision 5 — 2011-07-26

command terminator / delimiter. Any newline that is present after the ?> tag is ignored and is not
considered part of the following content block. Each content block is implicitly converted to a 'put
binary' command either in global scope, or within an enclosing handler, should there be one. The
equating content blocks with the binary form of put essentially means that the encoding of any
content must match the output text encoding.

An important limitation in the current implementation is that the encoding of text inside code blocks
1s always considered to be that of the native platform. This means that if a file is encoded as UTF-8
then text within code blocks must be limited to ASCII text.

CGI Mode

If, on startup, the engine finds the GATEWAY INTERFACE environment variable then it initializes
itself in CGI mode. In this mode, various $ variables are made available to script for easy
interaction with the CGI environment.

The initial script to execute is taken from the PATH TRANSLATED environment variable, and
headers will be output before the first explicitly put or write to stdout.

In this mode, scripts can access the CGI variables passed to it via the § SERVER variable and any
form / query parameters via either § GET or § POST.

The GET data can either be fetched using $§ GET, as binary data (not converted to the native
character set) via $ GET BINARY, as raw data via $_GET RAW, or directly from the
QUERY_STRING.

The POST data can either be fetched using § POST (if it is encoded in a form the engine
understands), as binary data (not converted to the native character set) via $§ POST BINARY, as
raw data via § POST RAW, or directly by reading from stdin. When § POST is fetched for the
first time, the § POST RAW and § POST BINARY data will also be fetched. The same is true of
$ POST RAW and $§ POST BINARY. If script has already read from stdin, § POST,

$ POST BINARY and $ POST RAW will be empty.

Any CGI headers to be output should be specified using 'put [new] header ...". This either replaces
an existing header or appends a new header. The 'new' adjective is needed if multiple headers with
the same tag are needed. At a minimum, the engine will always generate an appropriate 'Content-
Type' header' if it has not been overridden by a 'put header' instruction.

At the moment the engine assumes that the 'Content-Type' is html if no header has been generated.
In this case, an appropriate 'charset' is appended depending on the setting of 'the
outputTextEncoding'.

Command-line Mode

If no GATEWAY INTERFACE environment variable is present, the engine loads the first
command-line argument as the initial script file.

In this mode, no special $ variables are created except for the normal import of environment
variables that occurs in other engine modes. Also, there is no special handling of stdio or stdout.

Revision 5 — 2011-07-26

Put Extensions

The server engine has a number of extensions to 'put' in order to ease development of CGI and
command-line script applications.

CGI headers can be output using 'put [new] header ..." - the command taking a standard header spec
'<key>:<value>' and either adding to the list of headers, or replacing an existing header.

Text to be interpreted as HTML content can be written out using 'put [unicode | content'. Any text
provided has full entity substitution performed (including quotes and angled brackets) as
appropriate to the outputTextEncoding (i.e. using named / numeric entities instead of encoded
values).

Text to be interpreted as HTML markup can be written out using 'put [unicode | markup'. In this
case, the engine assumes any quotes and angled brackets have been substituted and only ensures
that encoding of characters is appropriate to the outputTextEncoding.

If data is to be output without any automatic processing, then the 'put binary' form can be used. This
writes out a given string verbatim with no conversion or transcoding performed.

Otherwise, 'put' and 'put unicode' convert the given string appropriately depending on the current
'outputTextEncoding' with unknown characters being replaced with '?'. Additionally, line encoding
conversion is performed, changing the engine's internal universal LF line engine to LF, CR or
CRLF depending on the setting of the outputLineEndings.

Error Handling

If an error occurs which propagates back to the global script environment, then a
'scriptExecutionError' message will be sent to the global script (Home stack). If this is unhandled a
default error output handler will be invoked which uses 'the errorMode' to produce appropriate
output. After this, script execution is terminated.

Stack Support

The LiveCode Server engine supports loading stacks in a similar manner to that of the desktop
engines. Stacks provide the programmer with an additional means to store data and manage code.
However, visual and graphical commands are not supported (e.g. export snapshot). See the section
Global Script for more details of how the message path works in the server context.
To load a library stack use the start using command:

start using stack "<path to stack>"
As with the start using command in other environments, the libraryStack message will be sent to the
newly loaded library stack and its the stack script of the will sit behind the Home stack.
The go stack command is also valid:

go stack "<path to stack>"
Here, the newly loaded stack will sit in front of the home stack and will be sent the standard
initialisation messages (preopenstack, openstack etc).
You can also send messages directly to stacks using the following form:

send "<message nane>" to stack "<path to stack>"

Revision 5 — 2011-07-26

Stacks and objects can also be created using the standard create commands.

Externals

Included in the LiveCode Server distribution are the revZip, revXML and revDB externals, with
database drivers for MySQL, ODBC, Oracle PostgreSQL and SQLite provided. The browser, font,
speech and video grabber externals do not apply to the Sever platform.

SDK

Externals created with the desktop externals SDK can be used with LiveCode Server. The only
difference is with OS X externals, which must be compiled as dylibs rather than bundles. To do
this, add a new dylib target to your Xcode project.

Syntax

$_SERVER

Available when running CGI mode.

It is an array variable, containing the CGI interface related variables, along with any HTTP_*
variables that are available.

The list of CGI variables is:

« GATEWAY INTERFACE
« SERVER ADDR

« SERVER NAME

« SERVER SOFTWARE
« SERVER PROTOCOL
« REQUEST METHOD
« REQUEST TIME

« QUERY_STRING

« DOCUMENT ROOT
« HTTPS

« REMOTE USER

« REMOTE_ADDR

« REMOTE HOST

« REMOTE _PORT

« SERVER ADMIN
 SERVER PORT
 SERVER SIGNATURE
 PATH TRANSLATED
« REQUEST URI

« PATH_INFO

« SCRIPT NAME

« SCRIPT FILENAME
« CONTENT TYPE

Revision 5 — 2011-07-26

* CONTENT _LENGTH
$ SERVER can be modified but doing so has no effect and should be avoided (indeed, it might
become read-only in future).

$ GET

Available when running in CGI mode.

It is an array variable, translated from the QUERY STRING. It assumes the query string is encoded
as url-form-encoded data.

The data will be converted to the native character set from the character set defined in the
outputTextEncoding.

$_GET_RAW

Available when running in CGI mode.

A binary string variable, identical in content to that of the QUERY STRING.

$_GET_BINARY

Available when running in CGI mode.

It is an array variable, translated from the QUERY STRING. It assumes the query string is encoded
as url-form-encoded data.

No character set conversion is carried out on the data.

$ POST

Available when running in CGI mode.

It is an array variable, formed from reading stdin and translating the url-form-encoded data. If the
data is not encoded in that form, then it is empty.

The data will be converted to the native character set from the character set defined in the
outputTextEncoding.

The array is constructed on demand, and will be empty if stdin has been touched before it is used.

$_POST_RAW
Available when running in CGI mode.
A binary string variable, formed by reading the content of stdin.

The raw data is fetched on demand, and will be empty if stdin has been touched before it is used.

$_POST_BINARY

Available when running in CGI mode.

It is an array variable, formed from reading stdin and translating the url-form-encoded data. If the
data is not encoded in that form, then it is empty.

10

Revision 5 — 2011-07-26

No character set conversion is carried out on the data.

The array is constructed on demand, and will be empty if stdin has been touched before it is used.

stdin / stdout / stderr

In CGI mode, stdin is assumed to contain post data, and reading from it will prevent the engine's
automatic processing of such information.

In CGI mode, writing to stdout for the first time will trigger any headers to be generated.

If 'the errorMode' is stderr and default error handler is triggered then stderr is used as the target for
default error messages

include
Executes the given script in the context of the global environment.

The script is first loaded into memory and parsed, any variable and handler definitions being added
to the global (script) environment. Then, each command that is present is executed in order as it was
encountered in the file.

The include command only works when running in the server environment, invocation of the
command in other environments will throw an error.

The behavior of the include command is identical regardless of where it is run from - e.g. if it is run
from a handler in a stack, it will still only affect the global script environment (home stack).

require

Executes the given script in the context of the global environment, but only if it has not been
previously included/required.

This is the same as the 'include' command in operation, except it makes it easy to implement
'include-once' files and is designed primarily for library scripts.

Require and include are distinct in the sense that if you require a file and then include, the second
include will execute the file.

put

The put command has been enhanced with a number of undirected forms making it easier to
perform certain output operations. All undirected forms of put cause output to 'stdout', and thus are
affected by the 'headers-first' semantic in CGI mode.

put [new] header <header>

Replaces or adds a CGI output header to the current list that will be generated the first time any data
is output to stdout.

The <header> string should be of the form 'header: value'.

If new is not specified, any existing header of the same name has its value replaced by the action. If
new is specified, or an existing header is not found, a new entry is made at the end of the header
list.

11

Revision 5 — 2011-07-26

After headers have been output, the put header variant has no further effect.

put [unicode] <string>
Write the (unicode) string to stdout.

If unicode is not specified, <string> is considered to be in the native text encoding for the platform
and will be automatically converted to match the current 'outputTextEncoding' setting.

If unicode is specified, <string> is considered to be a binary string containing UTF-16 encoded text;
similarly, this will be automatically converted to match the current 'outputTextEncoding' setting.

When converting, any characters that are encountered which are not representable in the output text
encoding will be output as '?'.

In both cases, the internal line ending character 'LF' will be transformed on output to match the
setting of 'the outputLineEndings' property.

put binary <string>

Write the binary string to stdout. No processing is done on the string and it is written directly to
stdout with no intervening processing.

put [unicode] markup <string>

Write the given (unicode) string to stdout, processing it for suitable output in an SGML markup
context.

If 'unicode' is not specified, then <string> is considered to be in the native text encoding for the
platform. If 'unicode' is specified, then <string> is considered to be in UTF-16.

Upon output the text is converted to match the setting of the current 'outputTextEncoding' property,
with any unrepresentable characters being output using a decimal character entity reference
&#ddddd;.

Additionally, the internal line ending character 'LF' will be transformed on output to match the
setting of 'the outputLineEndings' property.

put [unicode] content <string>

Write the given (unicode) string to stdout, processing it for suitable output in an SGML content
context.

This functions in an identical way to 'put markup' except that '<', ', '&' and """ are encoded as
named entities - <, >, & and ".

the errorMode

Determines the action the engine takes when an error occurs and a custom scriptExecutionError
handler has not been provided.

This can be one of:
* debugger

* inline

12

Revision 5 — 2011-07-26

* stderr

* quiet
The 'debugger' setting is informational only and indicates that the script is being run in 'remote
debug' mode (only relevant to on-rev engine).

The 'inline' setting means that the error should be output into the stdout stream. In this case, the
engine assumes that the output is HTML and puts the error messages in a 'pre' block.

The 'stderr' setting means that the error should be written out to stderr.

The 'quiet' setting means that nothing is output anywhere when an error occurs.

the outputTextEncoding
Determines what text conversion to perform when writing text strings to stdout.
It can be one of the following:

* windows-1252: use the Windows 'Latin-1' encoding (codepage 1252) [this is the native text
encoding for the Windows engine |
* macintosh: use the MacRoman encoding [this is the native text encoding of the Mac
engine |
* 150-8859-1: use the [SO-8859-1 encoding [this is the native text encoding of the Linux
engine |
 utf-8: use the UTF-8 encoding
The naming of the encodings here corresponds directly to the IANA assigned charset names which
is why they are perhaps slightly different from text encoding naming elsewhere in the engine.

The following synonyms exist:

* windows == windows-1252

* mac == macintosh

* linux == is0-8859-1

* macroman == macintosh

e utf8 == utf-8
Additionally, 'native' can be specified to indicate that the outputTextEncoding should be the native
one for the platform the engine is running on. This is the default.

the outputLineEndings
Determines what line ending conversion to perform on text output.

This can be one of the following values:

e If

e cr

e crlf
The quoted literals *must* be used when setting this property - the property expects a name not a
sequence of bytes to use as the line-ending. The reason behind this is two-fold - (1) it is more
'correct' from the point of view it is identifying the style of line-ending rather than the sequence of
bytes to use (2) 'cr’ and 'If are defined as the same numToChar(10) constant on all platforms.

13

Revision 5 — 2011-07-26

scriptExecutionError

The 'scriptExecutionError' message is sent to the global script (home stack) when an uncaught error
is encountered. It has the following signature:

scri pt Executi onError pErrorStack, pFilesList

Here 'pErrorStack’ is the standard engine error stack listing, detailing the errors that occurred at
each stage of the stack being unwound and 'pFilesList' is the list of all files that have been
"included' / 'required' which the error stack references if an error occurred in the context of a file
script rather then an object script.

Changes Compared to revServer
There are a number of critical changes/improvements that have been made since revServer:

* Script files are now parsed before being executed - this allows the placement of handlers
anywhere within the script regardless of where they are called from. (Variables still need to
be declared before they are referenced - just like in object scripts - this is because variable
scope is not dynamic and is determined at parse-time in order of encounter).

* The 'put' command now assumes it is being given text strings and will convert them
according the outputTextEncoding. If binary data needs to be output then the 'put binary'
form must be used. (No processing is done if outputTextEncoding matches the native text
encoding which is the default case so existing scripts should continue to work).

» If scripts are using 'put' to write UTF-8 encoded text, then this should be done using 'put
unicode uniEncode(<string>, "UTF8")".

* The 'put content/markup' commands now do entity substitution for unrepresentable
characters. This may break existing scripts that are using them to output utf-8. Such uses
should be changed to 'put unicode content/markup uniEncode(<string>, "UTF8")'

* The 'global script environment' is now a 'home' stack that sits at the root of the message
path. This should not cause any problems with existing scripts as previously there was no
interaction with the message path at all, so they would not be using it.

* The server engine build on Mac is now 'proper' Mac rather than Darwin, this affects various
system functions (such as date/time, filename handling, text conversion etc. - these
implementations are taken from the Desktop Mac engine) as well as meaning the native text
encoding is MacRoman and default line endings is CR. The latter two can be changed to
match the revServer engine via explicit setting of 'the outputTextEncoding' and 'the
outputLineEndings' at the beginning of the file.

* The engine version has jumped from 3.5 up to 4.6.3 - meaning any bug-fixes and features
pertinent to server that have been added since 3.5 are now available. (Print to pdf is not yet
supported)

Change Logs and History

Engine Change History

4.6.3-dp-2 (2011-07-11) MM See section Changes Compared to revServer.

4.6.3-dp-3 (2011-07-13) MM Fixed bug with seek relative behaving differently to the desktop
platforms (9350).
Updated the platform string to be consistent with desktop

14

Revision 5 — 2011-07-26

engines.
Made § POST and § POST BINARY no longer mutually
exclusive (bug 9616).
Converted datain $§ GET and § POST to native character set
from the outputTextEncoding.
Added new deferred variables § GET_RAW, § GET_BINARY
and $_POST BINARY.

4.6.3-rc-1 (2011-07-15) MM Fixed bug with loading stacks (9619).

4.6.3-gm-1 (2011-07-19) MM No changes.

4.6.3-gm-2 (2011-07-26) MM No changes.

Document History

Revision 1 (2011-07-11) MM Initial version.

Revision 2 (2011-07-13) MM Updated Installation section.
Added Stack Support section.
Updated syntax details for § GET and $ POST to note
character set.
Updated syntax details for § POST and § POST RAW to note
they are no longer mutually exclusive.
Updated CGI Mode section to reflect the changes in CGI
variables.
Added syntax details for § GET_RAW, $§ GET BINARY and
$ POST BINARY.

Revision 3 (2011-07-15) MM Removed entry in section Changes Compared to revServer
stating § POST and $§ POST RAW are mutually exclusive.
Added Externals section.

Revision 4 (2011-07-19) MM No changes.

Revision 5 (2011-07-26) MM No changes.

15

	Overview
	Installation
	Installing with Apache
	Installing on OS X
	Installing on Windows
	Installing on Linux
	Installing via .htaccess

	Global Script
	CGI Mode
	Command-line Mode
	Put Extensions
	Error Handling
	Stack Support
	Externals
	SDK

	Syntax
	$_SERVER
	$_GET
	$_GET_RAW
	$_GET_BINARY
	$_POST
	$_POST_RAW
	$_POST_BINARY
	stdin / stdout / stderr
	include
	require
	put
	put [new] header <header>
	put [unicode] <string>
	put binary <string>
	put [unicode] markup <string>
	put [unicode] content <string>

	the errorMode
	the outputTextEncoding
	the outputLineEndings
	scriptExecutionError

	Changes Compared to revServer
	Change Logs and History
	Engine Change History
	Document History

