
Runtime Revolution: An easy
to learn programming software
for educators
The public has high hopes for computer technologies in the public schools. An issue to
be addressed is how best to utilize this investment. Computer technologies utilizing
multiple media and interactivity are beneficial in teaching and learning. The production
and sharing of learning objects demands that the educators possess the ability to
create them. Numerous studies1 reveal that most instructors do not venture beyond
such “basic” computer usage tasks as email, the web and word processing. This article
briefly examines novice/non-programmers and the multimedia authoring program
Revolution concentrating on its programming language, visualization, and the
possibility for meaningful module production/reuse.

Introduction
Computer scientist and educator Donald Norman (Norman, 1996) has noted that
computer technologies, especially those utilizing multiple media and interactivity, are
beneficial in three key areas of human learning, namely, engagement, effectiveness
and motivation. Additionally, the excitement within the educational community with
respect to the production and sharing of learning objects demands that the average
educator possess the ability to create meaningful learning objects. This demand,
however, presents the problem of learning the art of computer programming, an
activity which suggests spending a good deal of time learning a cryptic computer
language. This is not necessarily the case, however.

Some of you may remember Hypercard, an application program and programming
development environment produced by Apple Computer in 1987. For those who never
had the opportunity to use Hypercard, it was a graphically-oriented development
environment coupled with not only an easily comprehensible, English language-like
scripting language, but also a set of pre-built modules that the user could either utilize
as-is out of the box or customize for a particular use. As such, it was in a way an
embodiment of Ben Schneiderman's very articulation of the direct manipulation
interaction paradigm that made graphical user interfaces such as Apple's Macintosh
operating system easy to both learn and use by ordinary individuals: Hypercard
provided (a) visual objects that (b) could be easily manipulated in (c) a series of rapid,
incremental and reversible actions that resulted in the crucial feedback necessary for
learning to use the program. As such, it was often used for rapid application
development and quickly developed a reputation as a development environment which
empowered ordinary persons to create their own software without enrolling in a
computer science degree program.

1 Green, K.C. (2003). The 2003 Campus Computing Survey, http://www.campuscomputing.net

(accessedApril 2, 2007).

Hypercard was not, however, without its disadvantages. Color support was weak; the
only graphic file format directly supported was Apple's proprietary PICT; and
standalone executable files could run only on Apple machines. These disadvantages,
Apple's since-discontinuance of the program, the introduction of Microsoft's PowerPoint
presentation software, and the development and popularity of the world wide web
have seemingly introduced a shift among educators away from the production of
interactive, desktop-based digital educational wares in favor of static web pages,
PowerPoint presentations, and a few interactive digital modules produced by those
increasingly fewer educators with the skills to embrace the hypermedia creation tools
left on the market. Or, as Moser (2005) put it, “roughly ten years into the e-learning
age, educational technology has made only modest inroads into changing teaching.”2
The question, therefore, is whether there exists a market for a Hypercard-like product
or whether its paradigm-heyday should remain an education historical footnote.

The Rationale for Interactive Learning Modules and Problems with their
Production

David Staley (2004) has suggested that discussions involving the implementation of
digital technologies in the classroom begin by asking the question Why is this
technology here?3 “Ubiquity of technology is an insufficient rationale for inclusion in a
classroom,” he advises.4 Instead, as Claudia Perry (2004)5 suggests, digital
technologies in the classroom are best utilized when they “incorporate interactivity,
self-paced and self-directed learning options... and varied presentations of information
(text, audio, visuals, multimedia, simulation).”6

These qualities tend to be strikingly absent from most webpages and PowerPoint
presentations, the former due to the need to learn something akin to a formal
structured programming language, the latter by definition of the abilities of the
software itself. Moreover, merely adding and simply reading a basic PowerPoint
presentation, while technically meeting the average person's definition of using
computer technologies in the classroom, is a tragic disservice to the public's investment
in digital educational technologies: they lack the interactivity that makes computers in
the classroom a useful pedagogical addition. Even students themselves find such
presentations only marginally useful: one small study performed at the University of
Washington suggests that students desire that such presentations be utilized more
effectively,7 which does little to suggest that said presentations are an effective
learning tool in terms of engaging student interest.

2 Moser, F. (2007), Faculty Adoption of Educational Technology. Educause Quarterly (1)2007, p. 66.

This particular article deals with faculty adoption of digital tools for learning in higher education.
3 D. Staley (2004), Adopting Digital Technologies in the Classroom: 10 Assessment Questions,

Educause Quarterly (3)2004, pp. 20-26.
4 Ibid, p. 23.
5 C. Perry (2004), Information Technology and the Curriculum: A Status Report. Educause Quarterly

(4)2004, pp. 28-37
6 Ibid, p. 30.
7 Ibid, p. 31. Perry citing K. Gustafson, The Impact of Technologies on Learning, Planning for Higher

Education, 33(2), pp. 37-43.

One reason why such presentations are perhaps something less than an optimal
example of computers in the classroom can be glimpsed in an observation Kendall
Whitehouse (2005) made regarding the paradoxical earlier failure of television in the
classroom as opposed to the well-known successes of educational television programs
like Sesame Street and programs provided on the History Channel: “They do not use
television to replicate the experience of the classroom. They provide a different type
of learning, driven by the particular characteristics of the medium.”8 Indeed, a large
part of what distinguishes computer software from, say, a book, is its interactive
nature. More pointedly, as Marshall McLuhan put it, “the medium is the message,”9
and, in the case of the computer and its related technologies, the medium/message is
interactivity. Thus, when designing computer tools for learning, it is imperative that
one capitalizes on the computer's ability to provide interactivity, not only because it
assists with engaging the learner but also because it leverages the characteristics of
the computer's medium.

Armed with this insight, one might wonder why educators sometimes place such
emphasis on PowerPoint presentations as an effective educational tool given the wide
variety of digital creation tools that currently exist. The Wharton School (University of
Pennsylvania) has developed and implemented what they feel is a fairly successful
usage of web-based gameplay learning and simulation in the teaching of business and
economic concepts.10 The very nature of game play and simulation must needs require
interaction with the end user. To achieve this need, the Wharton School utilizes a full-
time IT staff to create these interactive learning modules in consultation with its
faculty, and uses industry-standard development tools, including Macromedia's (now
Adobe) ColdFusion MX, Flash and Dreamweaver, and Microsoft's SQL Server.11

The fact that the U of P requires a full-time IT staff to develop these programs as
opposed to the faculty members themselves developing them is telling: industry
standard tools tend not to be embraced by the average instructor. There exist entire
certification processes for learning SQL; providing interactivity in Flash requires
learning the close cousin of the JavaScript scripting language which was primarily
designed as a “lite” version of the formal programming language Java (and which itself
is the topic of numerous university-level classes and programs). Dreamweaver likewise
requires the use of a relatively unintuitive scripting language or environment in order to
provide web-based interactivity (such as asp or php-based solutions).

These, clearly, then, are not exemplary of programming solutions 'for the rest of us.'
The reasons are well-known to those who study the psychology of the novice or non-
programmer. Novice/non-programmers, not unlike the majority of the consumer (i.e.,
non-programmer) population are mystified by the computer's operations and see them
largely as a mysterious black box (DuBoulay, as cited by Mayer, 1981).12 Adding to
this obstacle is the fact that computer languages have a distinct epistemology of

8 Whitehouse, K. (2005). Web-Enabled Simulations: Exploring the Learning Process, Educause

Quarterly 2005(3), p. 20.
9 McLuhan, M. and Fiore, Q. (1967), The Medium is the Message: an inventory of effects.
10 Ibid.
11 Ibid, p. 23.
12 Mayer, R. (1981). The Psychology of how novices learn computer programming. ACM Computing

Surveys 13(1), 121-142.

computer data structures and algorithms that differ radically from the epistemology of
natural human languages (Smith, Cypher, & Schmucker, 1996).13 To put it briefly, as
Solloway (1983) has noted, “even at a simple level, [programming] is a difficult activity
to learn”14 (one must understand that, in 1983, programming involved a strictly
command-line environment). Indeed, it is estimated that fewer than one percent of
computer users have the ability to engage in programming activities.15

The nature of the programming language itself presents a major obstacle for the
novice/non-programmer, and it has been found that this audience has difficulty in
parsing pseudocode [that is, natural-language] representations of the programming
problem into the development environment's syntactical language (Green, 2001; Barr,
Holden, Philipps, D. & Greening, 1999).16 Additionally, programming language
reference materials, especially language dictionaries, are of little assistance in that
resources targetting the programming community tend to present code examples in
isolated, small examples which are focused on a single concept or a single language
construct.17 This isolation removes code from context as well as code from feedback,
and thus further fragments the programming/learning to program process by resulting
in a critical lack of understanding of how intentions become pseudocode, and how
pseudocode is translated into valid but rigidly syntactic computer language. Hence,
both the traditional programming references as well as the nature of the programming
language itself can result in the novice/non-programmer failing to develop an
understanding of how the subcomponents of computer programs relate to one another
and to the program's overall objectives.18

As an example, to set the label of a button, a traditional [object oriented]
programming language would require the user to write

firstButton= new button

firtButton.label = "push me"

Whereas an authoring system/programming environment which utilized a language
with natural-language properties would require the user to write

set the label of button 1 to "push me"

Two things should be immediately apparent when comparing the two sets of code:

13 Smith, D., Cypher, A. & Schmucker, K. (1996). Making programming easier for children. ACM

Interactions 3(5), 58-68.
14 Bonar, J. & Soloway, E. (1983). Uncovering principles of n ovice programming. Proceedings of the

10th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 10, 10-13.
15 Smith, D., Cypher, A. & Schmucker, K., op cit.
16 Green, T. (2001). Instructions and descriptions: some cognitive aspects of programming and similar

activities. Proceedings of the working conference on advanced visual interfaces, 21-29.; Barr, M.,
Holden, S., Philipps, D. & Greening, T. (1999). An exploration of novice programming errors in an
object-oriented environment. SIGCSE Bulletin 31(4), 42-46.

17 Neal, L. (1989). A system for example-based programming. CHI'89 Proceedings, 63-68.
18 Guzdial, M. (1995). Centralized mindset: a student problem with object-oriented programming.

SIGCSE'95, 182-185.

first, the traditional language required two lines of code whereas the natural-language
language required only one, and, second, the natural-language code style mimics the
way humans think (and, additionally, would be rather similar if not altogether identical
to the pseudocode describing said action). This short example is indicative of the
power of a non-traditional programming language using natural-language properties to
capitalize on the novice/non-programmer learner's innate capacity for natural human
language as an anchoring or scaffolding strategy in learning a development
environment's programming language.

A second large obstacle facing the novice/non-programmer is the absence in many
development environments to provide visual or otherwise obvious “one-to-one mapping
between what they write or see (in the code) and what the system is doing as a
result”19 in the midst of a programming activity. This suggests that visual and visually-
oriented programming environments such as Hypercard, Flash, Dreamweaver,
VisualBasic and various iconic-flow programs would lend themselves well to the
non/novice programmer by providing visual and metaphoric mappings or models of the
programming environment which link code and output.20 A wealth of literature exists
documenting the importance of appropriate metaphor, visualization and natural-
language environments in making programming an embraceable opportunity for the
novice/non-programmer and will not be repeated here. The question here is whether
or not Revolution is an example of that desired category of programming
environments.

What is Revolution?

Revolution is very similar to Apple's Hypercard in that it is an object and media-rich,
event-driven development environment which utilizes a natural language-like scripting
language at its core. As in Hypercard, the metaphor in use for application
development is the one of a 'stack' of cards. A 'stack' is a series of cards presented in a
window. A stack can contain other stacks; additionally, two or more stacks can be
deployed simultaneously in two separate windows. If the “stack-card” metaphor seems
a bit dated, feel free to think of a “stack” as an application, and a “card” as a particular
screen or window view (indeed, the need for retaining the stack-card metaphor and
language elements is due to the company's wish to ease the transition of previous
users of Hypercard and Supercard to allow them to import pre-existing “stacks” made
with those products with only minimal scripting changes needed). Additionally,
Revolution provides a wide variety of pre-made interface elements, from various button
types (including menuing elements)to different text fields to graphics, movie objects
(linked to QuickTime movies), image areas (for bitmapped graphics) and, within
variants of *nix, vector graphics which the user may add to their project by a drag-
and-drop methodology from Revolution's tools palette.

In sharp contrast to web-based documents, it is very easy to bring the application to
life. Simple actions can be assigned directly to any of those elements with Revolution's
language scripting language, thus reinforcing the concept of objects which exhibit
event-driven behavior via the pedagogically sound method of linking code and output.

19 Ramadhan, H. (1992). An intelligent discovery programming system. Proceedings of the 1992

ACM/SIGAPP Symposium on Applied Computing: technological challenges of the 1990's, 149-159.
20 Smith King and Barr, 1997

For instance, in a simple navigation system within a stack, the stack developer might
wish to provide forward and backwards navigation buttons. Using Revolution, the
procedure would be to drag-drop the button type of choice to one's open stack, then
double-click the button itself directly to access a script window allowing the developer
to assign the following scripted behavior (note: all text following “---” is commentary
to the preceding code; the “---” tells the underlying engine to ignore anything following
it on any given line):

on mouseUp –-the event precipitating the action

 go next card –- the behaviour to be performed by clicking

end mouseUp –- the end of this particular action

Thus, in the above example, we have visual objects that the learner can manipulate, a
direct object-action mapping paradigm linking code, object and outcome, and,
additionally, by switching mode within the development environment from
development to user/test mode (Revolution does not require a program to be compiled
for testing, or, indeed, even end user use purposes), the learner can immediately test
his/her efforts and receive valuable feedback which can serve to reinforce learning.

This is in stark contrast to authoring environments which utilize more formal
programming languages: Richard Decker (of Analytical Engine fame, 1990) has noted
that “even students with very good quantitative skills often expend more energy
learning where semicolons belong than they do mastering the concepts.”21 Decker's
initial efforts involved a “best approaches” look at the single, terminal, university-level
course in computer science which targets the non-computer science major. His
findings suggest that visually-oriented authoring environments such as Hypercard or
Revolution with natural-language like scripting languages support learning in that
novice/non-programmers “want results, and we feel that at the introductory level this is
an entirely appropriate point of view.”

Furthermore, by engaging in even such a simple programming activity as that noted
above, the direct and immediate feedback can provide a sense of accomplishment22
that not only is encouraging for the new/non-programmer, but also is an example of
“actually completing assignments... that require technology skills” that Efaw (2005)23
has noted as being one of two critical elements for successful implementation of
technology in the classroom.

Meaningful interactivity, however, requires more than simply creating “go next” buttons
that mimic using the space bar in a PowerPoint presentation. More complex
interactivity can be created in Revolution by using what is called “branching
constructs”; these provide different paths of action for the end user/student and can

21 Decker, R. and Hirshfield, S. (1990), A Survey Course in Computer Science using Hypercard.

Proceedings of the twenty-first ACM-SIGCSE technical symposium on computer science education
22(1), pp. 229-235.

22 Decker, ibid.
23 Efaw, J. (2005) , No Teacher Left Behind: how to teach with technology. Educause Quarterly 4, 28-

29.

also be achieved using, again, natural-language constructs:

on mouseUp

 answer “What do you want?” with “Coffee”, “tea” and “me”

 if it is “Coffee” then –– user clicked Coffee

 answer “Bad for your health” –– new dialogue box

 end if

 if it is “tea” then –– user clicked tea

 answer “High in antioxidants!”

 end if

 if it is “me” then –– user clicked me

 answer “I'm taken!”

 end if

end mouseUp

In the above example, if-then and if-end if structures are used to provide branching for
interactivity. The answer- with command produces a dialogue box with the
button choices specified in the remainder of that line of code (up to 7 such choices are
supported) whereas the answer alone command provides a dialogue box with the text
specified.

Thus, on the surface, Revolution works much like the easy-to-use interface and
application builder that Hypercard was. It is very similar. However, Revolution takes
the Hypercard paradigm several steps forward. Recall some of the disadvantages of
Hypercard: limited graphics support, practically nonexistant color support and the
inability to deploy creations to the Windows operating system. Conversely, Revolution
supports the major graphics file formats (TIFF, PNG, JPG, GIF etc.) as well as provides
modern color support. Additionally, Revolution breaks the platform barrier by allowing
a stack developer to deploy his or her creations onto the current major operating
systems – Mac OS 9, Mac OS X, Windows Vista and XP, and a number of unix variants.
Moreover (and very unlike Hypercard, which provided user interface elements that in
some instances weren't even in compliance with Apple's Human Interface Guidelines --
HIG -- for the time), the Revolution engine creates interface elements that are HIG-
compliant for every platform supported without any work required by the stack
developer.

It sounds simple, and, for you, the potential developer of educational learning objects,
it is simple, but what it means is quite extraordinary. You could even start making
shareware applications that not only run in the Mac OS, but also in Windows, IRIX,
Solaris, and more. And in case you prefer to impose your own style rather than follow
the OS native ones, you are free to create windows of any size and shape or create
widget-like applications translucent backgrounds. Moreover, with respect to the issue
of distribution and reuse of learning objects, Revolution provides the free and easy
ability to upload your stacks to a common and freely accessible server from within the
program's IDE (integrated development environment), another successful strategy for

assisting educators to infuse technology in the classroom.24

Revolution is thus a write-once, run-anywhere format. For the capital outlay of less
than US$100, users can distribute their application in a format that requires a player.
However this player comes for free and exists for any of the most common operating
systems. For a heavier price tag, you can compile your stack and transform it into a
native executable application that runs on those same operating systems, thus
eliminating the need for a player engine. All you need is a license that allows you to
compile for the appropriate OS. In other words, the potential audience for any of your
applications can be almost infinitely expanded, literally at the click of a button.

Moreover, and important with respect to the popularity of learning objects and building
collaborative repositories for the same, in addition to the ability to upload learning
objects to Revolution's publicly-accessible server, uncompiled Revolution stacks allow
new users or fellow developers the possibility to modify the existing learning object or
repurpose useful code modules used within the learning object. This results from the
uncompiled nature of the Revolution stack which provides not only full access to
underlying code attached to specific objects, but also the ability to simply copy-paste
useful objects and code between learning object stacks. Thus Revolution is not only
learnable, but its IDE or integrated development environment actually supports as well
as encourages learning and the ability for code modification/reuse directly.

Advanced Features

Revolution also provides solutions for more complex visual and audio representations
of information. It has functions that give you formatted display of HTML or RTF
content; spreadsheet/table fields; MIDI music file creation and playing; new sound-
recording architecture; support for the parsing and creation of XML documents;
Unicode text entry and text manipulation; instant access to web protocols like HTTP or
FTP, and TCP sockets; almost instant access to SQL databases; and calls to the system
shell. As an example, it has the ability to read a web document using the simple single
line of code get url "google.com". Similarly, external web files can be linked to
within Revolution using the simple bit of code go url "http://google.com", which
launches the end user's default web browser and, if the computer has an active
internet connection, directs the web browser to the specified site.

Revolution is also adept at text handling, largely because it does not utilize typed data
that most formal programming languages use. For example, in a formal programming
language, data must be declared to be boolean, integer, floating and strings. Failure
to correctly indicate the data type can lead to the program not working. However, in
Revolution, there is no need to declare data types: Revolution simply examines the
data in context and chooses the correct form of treatment. Hence, in Revolution,
“two” is the same as “2”. To put in a scrolling list field the data corresponding to the
fourth column of data of a csv file exported from Excel, nothing more is needed than

repeat for each line l in file url "my.home.page—my_data.csv"

 put item 4 of line l after field "the data"

end repeat

24 Efaw, op cit., 30.

Revolution can also handle regular expressions. All tag names in a XML document can
be found with the instruction

get matchtext(the_text, "<([^>])+", the_match)

Regex and CSV and XML, oh my!

What's all this incomprehensible stuff about csv formats and regular expressions and
text handling? Don't worry – if you don't need it, you don't need to know about it to
use Revolution. But it's nice to know that, should you, the now novice/non-
programmer, ever decide to spend a half-decade pursuing a degree in computer
science, you won't necessarily feel the need to pitch Revolution overboard because it
can't do “real” programming. For instance, recall the earlier example touting the
simplicity and intuitiveness of Revolution's use of the if-then and if-end if constructs?
Here's a secret: “real” programmers largely hate these constructs for being too
verbose; they like “case” and “switch” statement constructs. Revolution isn't particular
about which you use; use whichever is most within your comfort zone. Just keep in
mind that being able to build something functional, polished, and impressive on, say,
your Mac and hand it over to your, say, Windows or Linux-using (or, vice-versa)
students and colleagues comes at the educationally-attractive price of ~US$50 (for
Revolution Media, which also comes with pre-built templates, including games).

Conclusion
When Apple stopped supporting Hypercard, Educators were forced to moved on.
Some moved to Macromedia Director or Flash, others to REALbasic, and, increasingly,
many others to Microsoft's FrontPage and PowerPoint. But of the latter two, one still
requires the mastery of complex language solutions and the second is lacking in
interactivity. Somehow, the complexity or limitations of the “solutions” currently in use
by and for educators seem to have put an end to educator's efforts and abilities to
develop clever applications for use in the classroom. We sincerely hope that Revolution
will re-energize them. The Revolution development environment is a breakthrough for
anyone who writes and designs computer software. Revolution enables developers to
easily and quickly create powerful Internet-enabled applications and solutions which
can be delivered on Linux, Mac OS X, classic Mac OS, Windows, and popular UNIX
systems. This makes it ideal for the education market.

